Skip to main content
Log in

Analysis of Boolean functions based on interaction graphs and their influence in system biology

  • Hybrid Artificial Intelligence and Machine Learning Technologies
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Biological regulatory network can be modeled through a set of Boolean functions. These set of functions enable graph representation of the network structure, and hence, the dynamics of the network can be seen easily. In this article, the regulations of such network have been explored in terms of interaction graph. With the help of Boolean function decomposition, this work presents an approach for construction of interaction graphs. This decomposition technique is also used to reduce the network state space of the cell cycle network of fission yeast for finding the singleton attractors. Some special classes of Boolean functions with respect to the interaction graphs have been discussed. A unique recursive procedure is devised which uses the Cartesian product of sets starting from the set of one-variable Boolean function. Interaction graphs generated with these Boolean functions have only positive/negative edges, and the corresponding state spaces have periodic attractors with length one/two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Akutsu T, Kuhara S, Maruyama O, Miyano S (1998) A system for identifying genetic networks from gene expression patterns produced by gene disruptions and overexpressions. Genome Inf 9:151–160

    MATH  Google Scholar 

  2. Ay F, Xu F, Kahveci T (2009) Scalable steady state analysis of boolean biological regulatory networks. PloS one 4(12):e7992

    Article  Google Scholar 

  3. Bao Z, Li X, Zan X, Shen L, Ma R, Liu W (2016) Signalling pathway impact analysis based on the strength of interaction between genes. IET Syst Biol 10(4):147–152

    Article  Google Scholar 

  4. Bornholdt S (2005) Less is more in modeling large genetic networks. Science 310(5747):449–451

    Article  Google Scholar 

  5. Buck V, Ng S, Ruiz-Garcia AB, Papadopoulou K, Bhatti S, Samuel JM, Anderson M, Millar JB, McInerny CJ (2004) Fkh2p and sep1p regulate mitotic gene transcription in fission yeast. J Cell Sci 117(23):5623–5632

    Article  Google Scholar 

  6. Chai LE, Loh SK, Low ST, Mohamad MS, Deris S, Zakaria Z (2014) A review on the computational approaches for gene regulatory network construction. Comput Biol Med 48:55–65

    Article  Google Scholar 

  7. Chaos A, Aldana M, Espinosa-Soto C, de León BGP, Arroyo AG, Alvarez-Buylla ER (2006) From genes to flower patterns and evolution: dynamic models of gene regulatory networks. J Plant Growth 25(4):278–289

    Article  Google Scholar 

  8. Chaves M, Laurent T (2018) Analysis tools for interconnected Boolean networks with biological applications. Front Physiol 9:1–18

    Article  Google Scholar 

  9. Chaves M, Figueiredo D, Martins MA (2018) Boolean dynamics revisited through feedback interconnections. Nat Comput. https://doi.org/10.1007/s11047-018-9716-8

    Article  Google Scholar 

  10. Cheng D, Qi H (2010) A linear representation of dynamics of boolean networks. Trans Autom Control 55(10):2251–2258

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng D, Qi H, Li Z (2011) Model construction of boolean network via observed data. IEEE Trans Neural Netw 22(4):525–536

    Article  Google Scholar 

  12. Ching WK, Chen X, Tsing NK (2009) Generating probabilistic boolean networks from a prescribed transition probability matrix. IET Syst Biol 3(6):453–464

    Article  Google Scholar 

  13. Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast. PloS one 3(2):e1672

    Article  Google Scholar 

  14. Devloo V, Hansen P, Labbé M (2003) Identification of all steady states in large networks by logical analysis. Bull Math Biol 65(6):1025–1051

    Article  MATH  Google Scholar 

  15. Dougherty ER, Pal R, Qian X, Bittner ML, Datta A (2010) Stationary and structural control in gene regulatory networks: basic concepts. Int J Syst Sci 41(1):5–16

    Article  MathSciNet  MATH  Google Scholar 

  16. Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2004) A gene regulatory network model for cell-fate determination during arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16(11):2923–2939

    Article  Google Scholar 

  17. Feng W, Yang SX, Wu H (2011) On delayed uncertain genetic regulatory networks: robust stability analysis. Int J Comput Math 88(12):2448–2463

    Article  MathSciNet  MATH  Google Scholar 

  18. Gadouleau M, Richard A, Fanchon E (2018) Reduction and fixed points of boolean networks and linear network coding solvability. IEEE Trans Inf Theory 62(5):2504–2519

    Article  MathSciNet  MATH  Google Scholar 

  19. Glass L, Kauffman SA (1973) The logical analysis of continuous, non-linear biochemical control networks. J Theor Biol 39(1):103–129

    Article  Google Scholar 

  20. Grinstead CM, Snell JL (2012) Introduction to probability. American Math. Soc, Providence

    MATH  Google Scholar 

  21. Heidel J, Maloney J, Farrow C, Rogers J (2003) Finding cycles in synchronous boolean networks with applications to biochemical systems. Int J Bifurc Chaos 13(03):535–552

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang S (1999) Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. Int J Mol Med 77(6):469–480

    Article  Google Scholar 

  23. Huang S (2006) Cell state dynamics and tumorigenesis in Boolean regulatory networks. Springer, Berlin

    Book  Google Scholar 

  24. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–467

    Article  MathSciNet  Google Scholar 

  25. Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford

    Google Scholar 

  26. Lee S, Ko J, Tan X, Patel I, Balkrishnan R, Chang J (2014) Markov chain modelling analysis of HIV/AIDS progression: a race-based forecast in the united states. Indian J Pharm Sci 76(2):107

    Google Scholar 

  27. Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci U S Am 101(14):4781–4786

    Article  Google Scholar 

  28. Li H, Wang Y (2017) Robust stability and stabilisation of boolean networks with disturbance inputs. Int J Syst Sci 48(4):750–756

    Article  MathSciNet  MATH  Google Scholar 

  29. Li B (2017) Graphical reduction of probabilistic boolean networks. In: 36th Chinese control conference (CCC), 2017. IEEE, pp 1430–1434

  30. Mendoza L, Xenarios I (2006) A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theor Biol Med Model 3(1):13

    Article  Google Scholar 

  31. Mochizuki A (2005) An analytical study of the number of steady states in gene regulatory networks. J Theor Biol 236(3):291–310

    Article  MathSciNet  Google Scholar 

  32. Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR (2007) A primer on learning in bayesian networks for computational biology. PLOS Comput Biol 3(8):e129

    Article  Google Scholar 

  33. Novak B, Pataki Z, Ciliberto A, Tyson JJ (2001) Mathematical model of the cell division cycle of fission yeast. Chaos interdiscip J Nonlinear Sci 11(1):277–286

    Article  MATH  Google Scholar 

  34. Pal R, Ivanov I, Datta A, Bittner ML, Dougherty ER (2005) Generating boolean networks with a prescribed attractor structure. Bioinformatics 21(21):4021–4025

    Article  Google Scholar 

  35. Paulevé L, Richard A (2012) Static analysis of boolean networks based on interaction graphs: a survey. Electron Notes Theor Comput Sci 284:93–104

    Article  MathSciNet  MATH  Google Scholar 

  36. Rejc Z, Magdevska L, Trselic T, Osolin T, Mraz J, Pavliha E, Zimic N, Cvitanovic T, Rozman D, Moskon M, Mraz M (2017) Computational modelling of genome-scale metabolic networks and its application to CHO cell cultures. Comput Biol Med 88:150–160

    Article  Google Scholar 

  37. Remy É, Ruet P, Thieffry D (2008) Graphic requirements for multistability and attractive cycles in a boolean dynamical framework. Adv Appl Math 41(3):335–350

    Article  MathSciNet  MATH  Google Scholar 

  38. Rout RK, Choudhury PP, Sahoo S, Ray C (2015) Partitioning 1-variable boolean functions for various classification of n-variable boolean functions. Int J Comput Math 92(10):2066–2090

    Article  MathSciNet  MATH  Google Scholar 

  39. Rout RK, Pal Choudhury P, Sahoo S (2013) Classification of boolean functions where affine functions are uniformly distributed. J Discrete Math 2013:1–12

    Article  MATH  Google Scholar 

  40. Rosenblueth DA, Muñoz S, Carrillo M, Azpeitia E (2014) Inference of Boolean networks from gene interaction graphs using a SAT solver. In: International conference on algorithms for computational biology. Springer, Cham, pp 235–246

  41. Saadatpour A, Albert R, Reluga TC (2013) A reduction method for boolean network models proven to conserve attractors. SIAM J Appl Dyn Syst 12(4):1997–2011

    Article  MathSciNet  MATH  Google Scholar 

  42. Sahoo S, Choudhury PP, Chakraborty M (2008) Characterization of any non-linear boolean function using a set of linear operators. arXiv preprint arXiv:0808.1641

  43. Seixas FL, Zadrozny B, Laks J, Conci A, Saade DCM (2014) A bayesian network decision model for supporting the diagnosis of dementia, Alzheimer's disease and mild cognitive impairment. Comput Biol Med 51:140–158

    Article  Google Scholar 

  44. Shmulevich I, Dougherty ER (2010) Probabilistic Boolean networks: the modeling and control of gene regulatory networks. SIAM, Auckland

    Book  MATH  Google Scholar 

  45. Sipari P (1991) Structured system models part 2. Directed graphs and boolean matrices. Int J Syst Sci 22(6):1071–1092

    Article  MathSciNet  MATH  Google Scholar 

  46. Thieffry D (2007) Dynamical roles of biological regulatory circuits. Brief Bioinform 8(4):220–225

    Article  Google Scholar 

  47. Thomas R, d’Ari R (1990) Biological feedback. CRC Press, Boca Raton

    MATH  Google Scholar 

  48. Trepode NW, de Farias CR, Barrera J (2013) A pattern-oriented specification of gene network inference processes. Comput Biol Med 43(10):1415–1427

    Article  Google Scholar 

  49. Veliz-Cuba A (2011) Reduction of boolean network models. J Theor Biol 289:167–172

    Article  MathSciNet  MATH  Google Scholar 

  50. Vichniac GY (1990) Boolean derivatives on cellular automata. Physica D 45(1–3):63–74

    Article  MathSciNet  MATH  Google Scholar 

  51. Wu CH, Sahoo D, Arvanitis C, Bradon N, Dill DL, Felsher DW (2013) Correction: combined analysis of murine and human microarrays and chip analysis reveals genes associated with the ability of myc to maintain tumorigenesis. PLoS Genet 9(10):1–16

    Article  Google Scholar 

  52. Xiao M, Zheng WX, Cao J (2014) Stability and bifurcation of genetic regulatory networks with small rnas and multiple delays. Int J Comput Math 91(5):907–927

    Article  MATH  Google Scholar 

  53. Zhang F, Hu Y, Jia Y, Xie M (2012) New constructions of balanced boolean functions with high nonlinearity and optimal algebraic degree. Int J Comput Math 89(10):1319–1331

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhou Y, Xie M, Xiao G (2009) On cross-correlation properties of boolean functions. In: Fourth international conference on communications and networking in China, 2009. ChinaCOM 2009. IEEE, pp 1–5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjeet Kumar Rout.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Boolean functions (BFs) are responsible to generate IGs having positive/negative edges only from 2 to 4-variable

Appendix: Boolean functions (BFs) are responsible to generate IGs having positive/negative edges only from 2 to 4-variable

See Tables 9, 10.

Table 9 Shows Boolean functions (BFs) responsible to generate IGs having positive edges only from 2 to 4-variable
Table 10 Shows Boolean functions (BFs) responsible to generate IGs having negative edges only from 2 to 4-variable

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, R.K., Maity, S.P., Choudhury, P.P. et al. Analysis of Boolean functions based on interaction graphs and their influence in system biology. Neural Comput & Applic 32, 7803–7821 (2020). https://doi.org/10.1007/s00521-019-04102-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04102-2

Keywords

Navigation