Skip to main content

Advertisement

Log in

Asymptotic flatness of Morrey extremals

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the limiting behavior as \(|x|\rightarrow \infty \) of extremal functions u for Morrey’s inequality on \(\mathbb {R}^n\). In particular, we compute the limit of u(x) as \(|x|\rightarrow \infty \) and show |x||Du(x)| tends to 0. To this end, we exploit the fact that extremals are uniformly bounded and that they each satisfy a PDE of the form \(-\Delta _pu=c(\delta _{x_0}-\delta _{y_0})\) for some \(c\in \mathbb {R}\) and distinct \(x_0,y_0\in \mathbb {R}^n\). More generally, we explain how to quantitatively deduce the asymptotic flatness of bounded p-harmonic functions on exterior domains of \(\mathbb {R}^n\) for \(p>n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Calder, J.: The game theoretic \(p\)-Laplacian and semi-supervised learning with few labels. Nonlinearity 32(1), 301–330 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Evans, L.C.: A new proof of local \(C^{1,\alpha }\) regularity for solutions of certain degenerate elliptic p.d.e. J. Differ. Equ. 45(3), 356–373 (1982)

    MATH  Google Scholar 

  3. Evans, L.C.: Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  4. Fraas, M., Pinchover, Y.: Positive Liouville theorems and asymptotic behavior for \(p\)-Laplacian type elliptic equations with a Fuchsian potential. Conflu. Math. 3(2), 291–323 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Fraas, M., Pinchover, Y.: Isolated singularities of positive solutions of \(p\)-Laplacian type equations in \({\mathbb{R}}^d\). J. Differ. Equ. 254(3), 1097–1119 (2013)

    MATH  Google Scholar 

  6. Hynd, R., Seuffert, F.: Extremals of Morrey’s inequality (2018)

  7. Kichenassamy, S.: Quasilinear problems with singularities. Manuscr. Math. 57(3), 281–313 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kichenassamy, S., Véron, L.: Singular solutions of the \(p\)-Laplace equation. Math. Ann. 275(4), 599–615 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Kichenassamy, S., Véron, L.: Erratum: “Singular solutions of the \(p\)-Laplace equation”. Math. Ann. 277(2), 352 (1987)

    MathSciNet  MATH  Google Scholar 

  10. Lewis, J.L.: Regularity of the derivatives of solutions to certain degenerate elliptic equations. Indiana Univ. Math. J. 32(6), 849–858 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lindqvist, P.: Notes on the \(p\)-Laplace equation. Report, vol. 102. University of Jyväskylä Department of Mathematics and Statistics. University of Jyväskylä, Jyväskylä (2006)

  12. Martos, B.: Nonlinear Programming: Theory and Methods. North-Holland Publishing Co., Amsterdam (1975)

    MATH  Google Scholar 

  13. Pinchover, Y., Tintarev, K.: On positive solutions of minimal growth for singular \(p\)-Laplacian with potential term. Adv. Nonlinear Stud. 8(2), 213–234 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Serrin, J.: Local behavior of solutions of quasi-linear equations. Acta Math. 111, 247–302 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Serrin, J.: Singularities of solutions of nonlinear equations. In: Proceedings of Symposia in Applied Mathematics, vol. XVII, pp. 68–88. American Mathematical Society, Providence, R.I. (1965)

  16. Slepčev, D., Thorpe, M.: Analysis of \(p\)-Laplacian regularization in semisupervised learning. SIAM J. Math. Anal. 51(3), 2085–2120 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Ural’ceva, N.N.: Degenerate quasilinear elliptic systems. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7, 184–222 (1968)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Hynd.

Additional information

Communicated by O.Savin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

R. Hynd: Partially supported by NSF Grant DMS-1554130.

Appendix A: Numerical method

Appendix A: Numerical method

We will now discuss the method used to approximate the solution of PDE (1.3) displayed in Fig. 1. It turns out that this method also can be adapted to obtain approximations of solutions of the multipole Eq. (5.4), as exhibited in Figs. 3 and 4. For simplicity, we will focus on the particular case of approximating a solution u of the PDE

$$\begin{aligned} -\Delta _pu=\delta _{(0,1)}-\delta _{(0,-1)} \end{aligned}$$
(A.1)

in \(\mathbb {R}^2\). We will also change notation and use ordered pairs (xy) to denote points in \(\mathbb {R}^2\) so that \(u=u(x,y)\).

Observe that any solution \(u\in {{\mathcal {D}}}^{1,p}(\mathbb {R}^2)\) of (A.1) minimizes

$$\begin{aligned} \iint _{\mathbb {R}^2}\frac{1}{p}|Dv|^pdxdy- (v(0,1)-v(0,-1)) \end{aligned}$$
(A.2)

among all \(v\in {{\mathcal {D}}}^{1,p}(\mathbb {R}^2)\). For a given \(\ell \in \mathbb {N}\), we may also consider the problem of minimizing

$$\begin{aligned} \int ^\ell _{-\ell }\int ^\ell _{-\ell }\frac{1}{p}|Dv|^pdxdy- (v(0,1)-v(0,-1)) \end{aligned}$$

amongst \(v\in W^{1,p}([-\ell ,\ell ]^2)\). It is not hard to show this problem has a minimizer \(u_\ell \in W^{1,p}([-\ell ,\ell ]^2)\). Further, it is routine to check that \(u_\ell (x,y)-u_\ell (0,0)\) converges to u(xy) for each \((x,y)\in \mathbb {R}^2\) as \(\ell \rightarrow \infty \), where u is the unique minimizer of (A.2) with \(u(0,0)=0\). Consequently, we will focus on approximating \(u_\ell \).

Below we will show how to derive a discrete version of our minimization problem for \(u_\ell \). Then we will explain how to use an iteration scheme based on a quasi-Newton method. Again we emphasize that all of the figures in this article were based on this method or minor variants to account for differences in the particular examples we considered.

1.1 Appendix A.1: Discrete energy

Let us fix \(\ell \in \mathbb {N}\) (\(\ell \ge 2\)) and discretize the interval \( [-\ell ,\ell ]\) along the x-axis with

$$\begin{aligned} x_i=-\ell +(i-1)h \end{aligned}$$

for \(i=1,\dots , M\). Here

$$\begin{aligned} h=\frac{2\ell }{M-1}, \end{aligned}$$

and we note that each of the subintervals \([x_1,x_{2}],\dots , [x_{M-1},x_{M}] \) has length h. We can do the same for the interval \([-\ell ,\ell ]\) along the y-axis and obtain

$$\begin{aligned} y_j=-\ell +(j-1)h \end{aligned}$$

for \(j=1,\dots , M\). Our goal is to derive an appropriate energy specified for functions defined on the grid points \((x_i,y_j)\).

To this end, we observe that if \(v:[-\ell ,\ell ]^2\rightarrow \mathbb {R}\) is sufficiently smooth

$$\begin{aligned}&\int ^\ell _{-\ell }\int ^\ell _{-\ell }|Dv|^pdxdy\\&\quad \approx \sum ^{M-1}_{i,j=1}|Dv(x_i,y_j)|^ph^2\\&\quad =\sum ^{M-1}_{i,j=1}\left( v_{x}(x_i,y_j)^2+v_{y}(x_i,y_j)\right) ^{p/2}h^2\\&\quad \approx \sum ^{M-1}_{i,j=1}\left( \left( \frac{v(x_i+h,y_j)-v(x_i,y_i)}{h}\right) ^2+\left( \frac{v(x_i,y_j+h)-v(x_i,y_i)}{h}\right) ^2\right) ^{p/2}h^2\\&\quad =\sum ^{M-1}_{i,j=1}\left( \left( \frac{v(x_{i+1},y_j)-v(x_i,y_i)}{h}\right) ^2+\left( \frac{v(x_i,y_{j+1})-v(x_i,y_i)}{h}\right) ^2\right) ^{p/2}h^2\\&\quad = h^{2-p}\sum ^{M-1}_{i,j=1}\left( \left( v(x_{i+1},y_j)-v(x_i,y_i)\right) ^2+\left( v(x_i,y_{j+1})-v(x_i,y_i\right) ^2\right) ^{p/2}. \end{aligned}$$

We also suppose \(h=1/k\) for some \(k\in \mathbb {N}\) which gives

$$\begin{aligned} M=2\ell k+1 \end{aligned}$$

and

$$\begin{aligned} (x_{\ell k+1}, y_{(\ell +1) k+1})=(0,1)\quad \text {and}\quad (x_{\ell k+1}, y_{(\ell -1) k+1})=(0,-1). \end{aligned}$$

As a result, we will attempt to minimize

$$\begin{aligned} E(v)= & {} \frac{1}{p}k^{p-2}\sum ^{M-1}_{i,j=1}\left( \left( v_{i+1,j}-v_{i,j}\right) ^2+\left( v_{i,j+1}-v_{i,j}\right) ^2\right) ^{p/2}\nonumber \\&-(v_{\ell k+1,(\ell +1)k+1}-v_{\ell k+1,(\ell -1)k+1}) \end{aligned}$$
(A.3)

over the \(M^2-1\) variables

$$\begin{aligned} v= \left( \begin{array}{ccccc} v_{1,1} &{} v_{1,2}&{}\dots &{} v_{1,M-1}&{} v_{1,M}\\ v_{2,1} &{} v_{2,2}&{}\dots &{} v_{2,M-1}&{} v_{2,M}\\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ v_{M-1,1} &{} v_{M-1,2} &{} \dots &{} v_{M-1,M-1} &{}v_{M-1,M} \\ v_{M,1} &{} v_{M,2} &{} \dots &{} v_{M,M-1} &{} \end{array}\right) . \end{aligned}$$

A minimizer \(v=(v_{ij})\) for E would then form an approximation for \(u_\ell \) on the grid points \((x_i,y_j)\)

$$\begin{aligned} u_\ell (x_i,y_j)\approx v_{ij}. \end{aligned}$$

1.2 Appendix A.2: Quasi-Newton method

We used a multidimensional version of the secant method to approximate minimizers of the discrete energy E defined above in (A.3). In particular, since E is convex we only need to approximate a \(v=(v_{ij})\) such that

$$\begin{aligned} \partial _{v_{ij}} E(v)=0 \end{aligned}$$

for each \(i,j=1,\dots , M\) with \((i,j)\ne (M,M)\).

First we chose the initial guesses

$$\begin{aligned} v^0_{ij}=0 \end{aligned}$$

and

$$\begin{aligned} v^1_{ij}=g(x_i,y_j). \end{aligned}$$

Here

$$\begin{aligned} g(x,y)=-\frac{1}{4\pi }\log \left[ \frac{x^2+(y-1)^2+10^{-2}}{x^2+(y+1)^2+10^{-2}}\right] \end{aligned}$$

is approximately equal to

$$\begin{aligned} g_0(x,y)=-\frac{1}{4\pi }\log \left[ \frac{x^2+(y-1)^2}{x^2+(y+1)^2}\right] , \end{aligned}$$

which is a solution of the Dipole equation \(-\Delta g_0=\delta _{(0,1)}-\delta _{(0,-1)}\) in \(\mathbb {R}^2\).

Then we performed the iteration

$$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle v^{m+1}_{ij}=v^{m}_{ij}-\tau _m\partial _{v_{ij}} E(v^m) \\ \\ \tau _m:=\frac{\displaystyle \sum \nolimits _{ij}(v^m_{ij}-v^{m-1}_{ij}) (\partial _{v_{ij}} E(v^m)-\partial _{v_{ij}} E(v^{m-1}))}{\displaystyle \sum \nolimits _{ij}\left( \partial _{v_{ij}} E(v^m)-\partial _{v_{ij}} E(v^{m-1})\right) ^2} \end{array}\right. } \end{aligned}$$

for \(m=1,2,3,\dots \) until the stopping criterion

$$\begin{aligned} \max _{ij}\left| \partial _{v_{ij}} E(v^m)\right| <10^{-6} \end{aligned}$$

was achieved. The iteration was computed for all \(i,j=1,\dots , M\) except for \((i,j)\ne (M,M)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hynd, R., Seuffert, F. Asymptotic flatness of Morrey extremals. Calc. Var. 59, 159 (2020). https://doi.org/10.1007/s00526-020-01827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01827-0

Navigation