Skip to main content
Log in

The Late Neoproterozoic magmatism in the Ediacaran series of the Eastern Pyrenees: new ages and isotope geochemistry

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Geochronological U–Pb (LA-ICP-MS), geochemical and isotopic data from metavolcanic felsic rocks of the Canigó and Cap de Creus massifs in the Eastern Pyrenees provide evidence of an Ediacaran magmatic event lasting 30 Ma in NE Iberia. These data also constrain the age of the Late Neoproterozoic succession in the Cap de Creus massif, where depositional ages range from 577 to 558 Ma, and in the Canigó massif, where the data (575–568 Ma) represent minimum ages. The geochemistry of the felsic rocks indicates that they were formed in a back-arc environment and they record a fragment of a long-lived subduction-related magmatic arc (620–520 Ma) in the active northern Gondwana margin. The homogeneity shown by all these crustal fragments along this margin suggests that the individualization of the Pyrenean basement from the Iberian Massif started later, probably during its transition from an active to a passive margin in Cambro–Ordovician times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguilar C, Liesa M, Castiñeiras P, Navidad M (2013) Late Variscan metamorphic and magmatic evolution in the Eastern Pyrenees revealed by U–Pb age zircon dating. J Geol Soc Lond. doi:10.1144/jgs2012-086

    Google Scholar 

  • Alexandre P (2007) U–Pb zircon SIMS ages from the French Massif Central and implication for the pre-Variscan tectonic evolution in Western Europe. Comptes Rendus Geosci 339:613–621

    Article  Google Scholar 

  • Alexandrov P, Floc’h J-P, Cuney M, Cheilletz A (2001) Datation U–Pb à la microsonde ionique des zircons de l’unité supérieure de gneiss dans le Sud Limousin, Massif central. Comptes Rendus de l’Académie des Sciences 332:625–632

    Google Scholar 

  • Ayora C, Casas JM (1986) Strabound As–Au mineralization in pre-Caradocian rocks form the Vall de Ribes, Eastern Pyrenees, Spain. Miner Deposita 21:278–287

    Article  Google Scholar 

  • Bandrés A, Eguíluz L, Pin C, Paquette JL, Ordóñez B, Le Fèvre B, Ortega LA, Ibarguchi JIG (2004) The northern Ossa-Morena Cadomian batholith (Iberian Massif): magmatic arc origin and early evolution. Int J Earth Sci 93:860–885

    Article  Google Scholar 

  • Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP–MS; a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostand Newsl 25:187–198

    Article  Google Scholar 

  • Carreras J, Druguet E (2013) Illustrated field guide to the geology of cap de creus. Servei de Publicacions de la Universitat Autònoma de Barcelona

  • Carreras J, Ramírez J (1984) The geological significance of the Port de la Selva Gneisses (Eastern Pyrenees, Spain). IGCP Newsl 6:27–31

    Google Scholar 

  • Casas JM (2010) Ordovician deformations in the Pyrenees: new insights into the significance of pre-Variscan (‘sardic’) tectonics. Geol Mag 147:674–689

    Article  Google Scholar 

  • Casas JM, Fernandez O (2007) On the Upper Ordovician unconformity in the Pyrenees: new evidence from the La Cerdanya area. Geol Acta 5:193–198

    Google Scholar 

  • Casas JM, Palacios T (2012) First age data obtained by Acritarchs in the pre-Upper Ordovician sequences of the Pyrenees: on the late Cambrian-early Ordocivian age of the Jujols Series. Comptes Rendus Geosci 344:50–56

    Article  Google Scholar 

  • Casas JM, Martí J, Ayora C (1986) Importance du volcanisme dans la composition lithostratigraphique du Paléozoïque inférieur des Pyrénées catalanes. Comptes Rendus de l’Académie des Sciences 302:1193–1198

    Google Scholar 

  • Casas JM, Castiñeiras P, Navidad M, Liesa M, Carreras J (2010) New insights into the Late Ordovician magmatism in the Eastern Pyrenees: U–Pb SHRIMP zircon data from the Canigó massif. Gondwana Res 17:317–324

    Article  Google Scholar 

  • Castiñeiras P, Navidad M, Liesa M, Carreras J, Casas JM (2008) U–Pb zircon ages (SHRIMP) for Cadomian and Lower Ordovician magmatism in the Eastern Pyrenees: new insights in the pre-Variscan evolution of the northern Gondwana margin. Tectonophysics 46:228–239

    Article  Google Scholar 

  • Cavet P (1957) Le Paléozoïque de la zone axiale des Pyrénées orientales françaises entre le Roussillon et l’Andorre. Bull Serv Carte Géol Fr 55:303–518

    Google Scholar 

  • Cirés J, Casas JM, Santanach P, Muñoz JA, Fleta J, Serrat D (1994) Mapa geológico de España (1:50.000): Molló (no 218). ITGE Madrid, España

  • Cocherie A, Baudin T, Autran A, Guerrot C, Fanning CM, Laumonier B (2005) U–Pb zircon (ID-TIMS and SHRIMP) evidence for the early Ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of the Pyrenees and the Montagne Noire (France). Bulletin de la Société Géologique de France 176:269–282

    Article  Google Scholar 

  • Den Brok SWJ (1989) Evidence for pre-Variscan deformation in the Lys Caillaouas area, Central Pyrenees, France. Geol Mijnbouw 68:377–380

    Google Scholar 

  • DePaolo DJ (1981) Neodymiun isotopes in the Colorado Front range and crust-mantle evolution in the Proterozoic. Nature 291:193–196

    Article  Google Scholar 

  • Eguiluz L, Ibarguchi JIG, Ábalos B, Apraiz A (2000) Superposed Hercynian and Cadomian orogenic cycles in the Ossa-Morena zone and related areas of the Iberian Massif. Geol Soc Am Bull 112:1398–1413. doi:10.1130/0016-7606(2000)112<1398:SHACOC>2.0.CO;2

    Google Scholar 

  • Fernández-Suárez J, Gutiérrez Alonso G, Jenner G, Simon EJ (1998) Geochronology and geochemistry of the Pola de Allande granitoids (northern Spain): their bearing on the Cadomian–Avalonian evolution of northwest Iberia. Can J Earth Sci 35:1439–1453

    Article  Google Scholar 

  • Fiannacca P, Williams IS, Cirrincione R, Pezzino A (2013) The augen gneisses of the Peloritani Mountains (NE Sicily): Granitoid magma production during rapid evolution of the northern Gondwana margin at the end of the Precambrian. Gondwana Res 23:782–796. doi:10.1016/j.gr.2012.05.019

    Article  Google Scholar 

  • Frei D, Gerdes A (2009) Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA–SF–ICP–MS. Chem Geol 261:261–270

    Article  Google Scholar 

  • García-Sansegundo J, Alonso JL (1989) Stratigraphy and structure of the southeastern Garona Dome. Geodin Acta 3:127–134

    Article  Google Scholar 

  • Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA–(MC–) ICP–MS analysis of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249:47–61

    Article  Google Scholar 

  • Guitard G (1970) Le métamorphisme hercynien mésozonal et les gneiss oeillés du massif du Canigou (Pyrénées orientales). Mémoires du B.R.G.M. 63

  • Guitard G, Laffitte F (1956) Sur l’importance et la nature des manifestations volcaniques dans le Paléozoïque des Pyrénées Orientales. Comptes Rendus de l’Académie des Sciences 242:2749–2752

    Google Scholar 

  • Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries TE (2004) Age and setting of the Upper Neoproterozoic Narcea Antiform volcanic rocks. Geogaceta 25:79–82

    Google Scholar 

  • Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. In: Coward MP, Ries AC (eds) Collision tectonics. Geological Society Special Publication 19, pp 67–81

  • Hartevelt JJA (1970) Geology of the upper Segre and Valira valleys, central Pyrenees, Andorra/Spain. Leidse Geol Meded 45:167–236

    Google Scholar 

  • Hastie AR, Kerr AC, Pearce JA, Mitchell SF (2007) Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. J Petrol 48:2341–2357. doi:10.1093/petrology/egm062

    Article  Google Scholar 

  • Jacobsen SB, Wasseburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155

    Article  Google Scholar 

  • Kriegsman LM, Aerden DGAM, Bakker RJ, den Brok SWJ, Schutjens PMTM (1989) Variscan tectonometamorphic evolution of the eastern Lys-Caillaouas massif, Central Pyrenees-evidence for late orogenic extension prior to peak metamorphism. Geol Mijnbouw 68:323–333

    Google Scholar 

  • Laumonier B, Guitard G (1986) Le Paléozoïque inférieur de la moitié orientale de la Zone Axiale des Pyrénées. Essai de synthèse. Comptes Rendus de l’Académie Sciences Paris 302:473–478

    Google Scholar 

  • Lescuyer JL, Cocherie A (1992) Datation sur monozircons des métadacites de Sériès: arguments pour un âge protérozoïque terminal des schistes X de la Montagne Noire (Massif central français). Comptes Rendus de l’Académie des Sciences 314:1071–1077

    Google Scholar 

  • Linnemann U, Romer RL (2002) The Cadomian Orogeny in Saxo-Thuringia, Germany: geochemical and Nd–Sr–Pb isotopic characterization of marginal basins with constraints to geotectonic setting and provenance. Tectonophysics 352:33–64

    Article  Google Scholar 

  • Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: constraints from LA–ICP–MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian-Variscan collision: Geological Society of America Special Paper 423, pp 61–96. doi:10.1130/2007.2423(03)

  • Linnemann U, Gerdes A, Hofmann M, Marko L (2014) The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton–Constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Res (in press). doi:10.1016/j.precamres.2013.08.007

  • Losantos M, Palau J, Carreras J, Druguet E, Santanach P, Cirés J (1997) Mapa geològic de Catalunya, Escala 1:25.000 Fulls: Roses 259-1-1, Cap de Creus, 259-2-1, Far de Roses 259-1-2. ICC Barcelona, España

  • Ludwig KR (1998) On the treatment of concordant uranium-lead ages. Geochim Cosmochim Acta 62:665–676

    Article  Google Scholar 

  • Ludwig KR (2001) Users manual for isoplot/Ex rev. 2.49. Berkeley Geochronology Center Special Publication No. 1a, pp 1–56

  • Maurel O, Respaut JP, Monié P, Arnaud N, Brunel M (2004) U–Pb emplacement and 40Ar/39Ar cooling ages of the eastern Mont-Louis granite massif (Eastern Pyrenees, France). Comptes Rendus Geosci 336:1091–1098

    Article  Google Scholar 

  • Melleton J, Cocherie A, Faure M, Rossi P (2010) Precambrian protoliths and Early Paleozoic magmatism in the French Massif Central: U–Pb data and the North Gondwana connection in the west European Variscan belt. Gondwana Res 17:13–25. doi:10.1016/j.gr.2009.05.007

    Article  Google Scholar 

  • Mezger JE (2010) Cadomian, Ordovician and Variscan igneous events preserved in gneiss domes of the Central Pyrenean Axial Zone. 13. Symposium “Tektonik, Struktur- und Kristallingeologie” (TSK 13), Frankfurt, 6–12 April 2010. TSK 13 conference abstracts and field guides, 40

  • Micheletti F, Barbey P, Fornelli A, Piccarreta G, Deloule E (2007) Latest Precambrian to Early Cambrian U–Pb zircon ages of augen gneisses from Calabria (Italy), with inference to the Alboran microplate in the evolution of the peri-Gondwana terranes. Int J Earth Sci 96:843–860. doi:10.1007/s00531-006-0136-0

    Article  Google Scholar 

  • Mingram B, Kröner A, Hegner E, Krentz O (2004) Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. Int J Earth Sci 93:706–727

    Article  Google Scholar 

  • Muñoz JA (1992) Evolution of a continental colision belt:ECORS-Pyrenees crustal balanced cross-section. In: McClay KR (ed) Thrust tectonics. Chapman & Hall, London, pp 235–246

    Chapter  Google Scholar 

  • Muñoz JA, Vergés J, Martínez-Rius A, Fleta J, Cirés J, Casas JM, Sàbat F (1994) Mapa geológico de España (1:50.000): Ripoll (no 256). ITGE Madrid, España

  • Murphy JB, Pisarevsky SA, Nance RD, Keppie JD (2004) Neoproterozoic-early Paleozoic evolution of peri-Gondwanan terranes: implications for Laurentia–Gondwana connections. Int J Earth Sci 93:659–682. doi:10.1007/s00531-004-0412-9

    Article  Google Scholar 

  • Nance RD, Gutiérrez-Alonso G, Keppie JD, Linneman U, Murphy JB, Quesada C, Strahan RA, Woodcock NH (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222

    Article  Google Scholar 

  • Navidad M, Carreras J (1995) Pre-Hercynian magmatism in the Eastern Pyrenees (Cap de Creus and Albera Massifs) and its geodynamical setting. Geol Mijnbouw 74:65–77

    Google Scholar 

  • Navidad M, Carreras J (2002) El volcanismo de la base del Paleozoico Inferior del Canigó (Pirineos Orientales). Evidencias geoquímicas de la apertura de una cuenca continental. Geogaceta 32:91–94

    Google Scholar 

  • Navidad M, Castiñeiras P, Casas JM, Liesa M, Fernández Suárez J, Barnolas A, Carreras J, Gil-Peña I (2010) Geochemical characterization and isotopic age of Caradocian magmatism in the northeastern Iberian Peninsula: insights into the Late Ordovician evolution of the northern Gondwana margin. Gondwana Res 17:325–337

    Article  Google Scholar 

  • Neubauer F (2002) Evolution of late Neoproterozoic to early Paleozoic tectonic elements in Central and Southeast European Alpine mountain belts: review and synthesis. Tectonophysics 352:87–103. doi:10.1016/S0040-1951(02)00190-7

    Article  Google Scholar 

  • Oberc-Dziedzic T, Klimas K, Kryza R, Fanning CM (2003) SHRIMP U–Pb zircon geochronology of the Strzelin gneiss, SW Poland: evidence for a Neoproterozoic thermal event in the Fore-Sudetic Block, Central European Variscides. Int J Earth Sci 92:701–711

    Article  Google Scholar 

  • Pearce JA, Harris NGW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983. doi:10.1093/petrology/25.4.956

    Article  Google Scholar 

  • Rodríguez-Alonso MD, Peinado M, López-Plaza M, Franco P, Carnicero A, Gonzalo JC (2004) Neoproterozoic–Cambrian synsedimentary magmatism in the Central Iberian Zone (Spain): geology, petrology and geodynamic significance. Int J Earth Sci 93:897–920

    Article  Google Scholar 

  • Romer RL, Soler A (1995) U–Pb age and lead isotopic characterization of Au-bearing skarn related to the Andorra granite. Miner Deposita 30:374–383

    Article  Google Scholar 

  • Rubio-Ordónez A, Gutiérrez-Alonso G, Valverde-Vaquero P, Cuesta A, Gallastegui G, Gerdes A, Cárdenes V (2013) Arc-related Ediacaran magmatism along the northern margin of Gondwana: geochronology and isotopic geochemistry from northern Iberia. Gondwana Res (in press). doi:10.1016/j.gr.2013.09.016

  • Sambridge MS, Compston W (1994) Mixture modeling of multi-component data sets with application to ion-probe zircon ages. Earth Planet Sci Lett 128:373–390

    Article  Google Scholar 

  • Santanach PF (1972a) Sobre una discordancia en el Paleozoico inferior de los Pirineos orientales. Acta Geológica Hispánica 7:129–132

    Google Scholar 

  • Santanach PF (1972b) Estudio tectónico del Paleozoico inferior del Pirineo entre la Cerdaña y el río Ter. Acta Geológica Hispánica 7:44–49

    Google Scholar 

  • Simancas JF, Expósito I, Azor A, Martínez Poyatos D, González Lodeiro F (2004) From the Cadomian orogenesis to the Early Paleozoic Variscan rifting in Southwest Iberia. J Iberian Geol 30:53–71

    Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcomission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Talavera C, Montero P, Martínez Poyatos D, Williams IS (2012) Ediacaran to Lower Ordovician age for rocks ascribed to the Schist–Graywacke complex (Iberian Massif, Spain): evidence from detrital zircon SHRIMP U–Pb geochronology. Gondwana Res 22:928–942

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Teipel U, Eichhorn R, Loth G, Rohrmüller J, Höll R, Kennedy A (2004) U–Pb SHRIMP and Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany): implications for Upper Vendian and Lower Ordovician magmatism. Int J Earth Sci 93:782–801

    Article  Google Scholar 

  • Tyszka R, Kryza R, Zalasiewic JA, Larionov AN (2008) Multiple Archaean to Early Palaeozoic events of the northern Gondwana margin witnessed by detrital zircons from the Radzimowice Slates, Kaczawa Complex (Central European Variscides). Geol Magazime 145:85–93

    Google Scholar 

  • Williams IS, Fiannacca P, Cirrincione R, Pezzino A (2012) Peri-Gondwanan origin and early geodynamic history of NE Sicily: a zircon tale from the basement of the Peloritani Mountains. Gondwana Res 22:855–865. doi:10.1016/j.gr.2011.12.007

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

  • Yilmaz Şahin S, Aysal N, Güngör Y, Peytcheva I, Neubauer F (2013) Geochemistry and U–Pb zircon geochronology of metagranites in Istranca (Strandja) Zone, NW Pontides, Turkey: implications for the geodynamic evolution of Cadomian orogeny. Gondwana Res (in press). doi:10.106/j.gr.2013.07.011

  • Zlatkin O, Avigad D, Gerdes A (2013) Evolution and provenance of Neoproterozoic basement and Lower Paleozoic siliciclastic cover of the Menderes Massif (western Taurides): coupled U–Pb–Hf zircon isotope geochemistry. Gondwana Res 23:682–700

    Article  Google Scholar 

  • Zwart HJ (1979) The geology of the central Pyrenees. Leidse Geol Meded 50:1–74

    Google Scholar 

Download references

Acknowledgments

This work was funded by projects CGL2010-21298 and Consolider-Ingenio 2010, under CSD2006-00041 “Topoiberia.” Detailed comments of R. Kryza, the editor and an anonymous reviewer greatly improved a first version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Casas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1. Results of the zircon analyses. (XLS 226 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casas, J.M., Navidad, M., Castiñeiras, P. et al. The Late Neoproterozoic magmatism in the Ediacaran series of the Eastern Pyrenees: new ages and isotope geochemistry. Int J Earth Sci (Geol Rundsch) 104, 909–925 (2015). https://doi.org/10.1007/s00531-014-1127-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1127-1

Keywords

Navigation