Skip to main content
Log in

3D gravity modelling of Colorado and Claromecó basins: new evidences for the evolution of the southwestern margin of Gondwana

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Although cratons have long been recognized as an important part of continental tectonic processes, we still have much to learn about their structural features and their relation to the genesis of basins, sedimentary thickness distributions, fold and thrust belts and surface processes. Contributing to a better knowledge of the crustal state and configuration of the southernmost part of the Río de la Plata Craton, could shed light on the still controversial tectonic processes, which were responsible for the deformation of the southwestern margin of Gondwana during the Late Paleozoic. In particular, the deformation and uplift of the Sierras Australes, which are part of the Claromecó Basin (Buenos Aires, Argentina), would be closely related to the crustal structure of the southern limit of the Río de la Plata Craton. Therefore, it is of crucial importance to investigate the possible existence of crustal heterogeneities underneath the Claromecó Basin, the Sierras Australes and the Colorado Basin, which can be related to structural features and weakness zones that could have played a major role in the tectonic evolution of the study area. For this purpose, we developed a 3D lithospheric-scale density model integrating various data, such as geological information, global gravity models, well data (thicknesses and lithologies), seismic tomography data (Moho depth), and pre-existing 3D density models of the Colorado Basin. Our model includes layers of sediments, crystalline crust and lithospheric mantle and therefore predicts the thickness variation of the upper and lower crust in the study area and of the main sedimentary sequences infilling the basins. Moreover, by analysing the model results, we propose a tentative location of the southern limit of the Río de la Plata Craton and its possible tectonic relationship with transfer zones identified in the Atlantic platform southwards. Our results suggest that the southern boundary of the craton is located along the northernmost limit of the Colorado Basin, which is in contrast with the boundary proposed in previous works. Therefore, we propose that the Colorado Basin rifting process could have occurred along this weakness domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Achilli S, Kostadinoff J (1985) Determinación de la velocidad de propagación de las ondas sísmicas “P” y módulos de elasticidad en rocas del Sistema de Ventania. Prim. J Bonaer Actas, pp 985–996 (Tandil)

  • Alessandretti L, Philipp RP, Chemale F, Brückmann MP, Zvirtes G, Matté V, Ramos VA (2013) Provenance, volcanic record, and tectonic setting of the Paleozoic Ventania Fold Belt and the Claromecó Foreland Basin: Implications onsedimentation and volcanism along the southwestern Gondwana margin. J S Am Earth Sci 47:12–31. https://doi.org/10.1016/j.jsames.2013.05.006

    Article  Google Scholar 

  • Andreis RR, Japas MS (2006) Cuencas Sauce Grande y Colorado. In: Léxico Estratigráfico la Argentina. Vol. II Pérmico 1–62.

  • Andreis RR, Iniguez LL, Lluch LL, Rodriguez R (1989) Cuenca Paleozoica de Ventania, Sierras Australes, Provincia de Buenos Aires. In: Chebli G, Spalletti L (eds) Cuencas sedimentarias Argentinas (Serie Correlación 6). Univ. Nac., Tucuman, pp 265–298

    Google Scholar 

  • Austin JA, Uchupi E (1982) Continental oceanic crustal transition off southwest Africa. Am Assoc Pet Geol Bull 66:1328–1347

    Google Scholar 

  • Autin J, Scheck-wenderoth M, Loegering MJ, Anka Z, Vallejo E, Rodriguez JF, Dominguez F (2013) Tectonophysics Colorado Basin 3D structure and evolution, Argentine passive margin. Tectonophysics. https://doi.org/10.1016/j.tecto.2013.05.019

    Article  Google Scholar 

  • Autin J, Scheck-Wenderoth M, Götze H-J, Reichert C, Marchal D (2016) Deep structure of the Argentine margin inferred from 3D gravity and temperature modelling, Colorado Basin. Tectonophysics 676:198–210. https://doi.org/10.1016/j.tecto.2015.11.023

    Article  Google Scholar 

  • Balarino ML (2014) Permian palynostratigraphy of the Claromecó Basin, Argentina. Alcheringa. An Australas J Palaeontol 38:317–337. https://doi.org/10.1080/03115518.2014.874709

    Article  Google Scholar 

  • Balestrini FI, Rosa ML (2018) Seismic structure of the Río de La Plata craton from surface wave tomography. Seismol Res Lett 89:717–966. https://doi.org/10.1785/0220180082

    Article  Google Scholar 

  • Ballivián Justiniano CA, Lafranchini ME, de Barrio RE, Etcheverry RO (2016) Deformación en el basamento neoproterozoico de las sierras australes de Buenos Aires: edad de la deformación y composición de los fluidos. 1ª Reunión de Fluidos y Deformación. 1 al 5 de agosto de 2016, Buenos Aires, Argentina, pp 23–24

  • Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. Eos Trans Am Geophys Union 81:F897

    Google Scholar 

  • Bayer U, Scheck-Wenderoth M, Koehler M (1997) Modeling of the 3D thermal field in the northeast German basin. Geol Rundschau 86:241–251

    Article  Google Scholar 

  • Bercovici D (1998) Generation of plate tectonics from lithosphere-mantle flow and void-volatile self-lubrication. Earth Planet Sci Lett 154:139–151

    Article  Google Scholar 

  • Bercovici D, Richard Y, Richards M (2000) The relation between mantle dynamics and plate tectonics: a primer. In: Richards MA, Gordon R, van der Hilst YR (eds) Hist. Dyn. Glob. Plate. Motions., vol 121. Am. Geophys. Union. Geophys. Monog.r, Washington DC, pp 5–46

    Chapter  Google Scholar 

  • Birch F (1961) The velocity of compressional waves in rocks to 10 kilobars: 2. J Geophys Res 66:2199–2224. https://doi.org/10.1029/JZ066i007p02199

    Article  Google Scholar 

  • Birch F (1964) Density and composition of mantle and core. J Geophys Res 69:4377–4388. https://doi.org/10.1029/JZ069i020p04377

    Article  Google Scholar 

  • Bossi J, Cingolani CA (2009) Extension and general evolution of the Río de la Plata Craton. Dev Precambr Geol 16:73–85

    Article  Google Scholar 

  • Buggisch WE (1987) Stratigraphy and very low grade metamorphism of the Sierras Australes de la Provincia de Buenos Aires (Argentina) and implications in Gondwana correlation. Zbl Geol Paläontol Tl I 7(8):819–837

    Google Scholar 

  • Cingolani CA, Berry CM, Morel E, Tomezzoli RN (2002) Middle Devonian lycopsids from high southern paleolatitudes of Gondwana (Argentina). Geol Mag 139(6):641–649

    Article  Google Scholar 

  • Cobbold P, Gapais D, Rossello E (1991) Partitioning of transpressive motions within a sigmoidal foldbel: the Variscan Sierras Australes, Argentina. J Struct Geol 13:743–758

    Article  Google Scholar 

  • Cobbold PR, Gapais D, Rossello EA, Milani EJ, Szatmari P (1992) PermoTriassic intracontinental deformation in SW Gondwana. In: De Wit MJ, Ransome ID (eds) Inversion tectonics of the Cape Fold Belt, Karoo and Cretaceous basins of Southern Africa. A. A. Balkema, Rotterdam, pp 23–26

    Google Scholar 

  • Cornero C, Pereira A, Pacino MC, Balparda L (2016) Comparación de modelos geopotenciales recientes en Argentina. Geoacta (Argentina) 41:24–34

    Google Scholar 

  • Dalla Salda LH, Cingolani CA, Varela R (1992) Early Paleozoic orogenic belt of the Andes in southwestern South America: result of Laurentia-Gondwana collision? Geology 20:617–620

    Article  Google Scholar 

  • Dingle RV, Siesser WG, Newton AR (1983) Mesozoic and Tertiary geology of Southern Africa. A. A. Balkema, Rotterdam, p 375

    Google Scholar 

  • Dominguez F, Marchal D, Sigismondi M, Espejón C, Vallejo E (2011) Caracterizacion de Dominios Estructurales e Influencia de Estructuras Preexistentes en Hemigrábenes de Rift en el Sector Centro-Norte de la Plataforma Contiental Argentina. In: XVIII Congr. Geol. Argentino, p 2

  • Dressel I, Scheck-wenderoth M, Cacace M (2017) Tectonophysics Backward modelling of the subsidence evolution of the Colorado Basin, offshore Argentina and its relation to the evolution of the conjugate Orange Basin, offshore SW Africa. Tectonophysics 716:168–181. https://doi.org/10.1016/j.tecto.2016.08.007

    Article  Google Scholar 

  • Faulkner P (2000) Tectonic and thermal evolution of South Atlantic marginal basins: Informe interno YPF S.A.

  • Förste C, Bruinsma S, Abrikosov O, Flechtner F, Marty J-C, Lemoine J-M, Dahle C, Neumayer H, Barthelmes F, König R (2014) EIGEN-6C4-The latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse. In: EGU Gen. Assem. Conf. Abstr., p 16

  • Förste C, Bruinsma S, Abrikosov O, Rudenko S, Lemoine JM, Marty JC, Neumayer KH, Biancale R (2016) EIGEN-6S4 A time-variable satellite-only gravity field model to d/o 300 based on LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse. V. 2.0. GFZ Data Serv. 15:18. https://doi.org/10.5880/icgem.2016.008

    Article  Google Scholar 

  • Franke D, Neben S, Schreckenberger B, Schulze A, Stiller M, Krawczyk CM (2006) Crustal structure across the Colorado Basin, offshore Argentina. Geophys J Int 165:850–864. https://doi.org/10.1111/j.1365-246X.2006.02907.x

    Article  Google Scholar 

  • Franke D, Neben S, Ladage S, Schreckenberger B, Hinz K (2007) Margin segmentation and volcano-tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic. Mar Geol 244:46–67. https://doi.org/10.1016/j.margeo.2007.06.009

    Article  Google Scholar 

  • Fryklund B, Marshall A, Stevens J (1996) Cuenca del Colorado. In: 13rd Congr. Geológico Argentino 3rd Congr. Explor. Hidrocarburos (Buenos Aires, Argentina). Ramos,VA, Turic MA (eds) Geol. y Recur. Nat. la Plataforma Cont. Argentina, Relat, pp 135–158

  • Götze H (1978) Numerical-method for computing gravity and vertical gradient of 3- dimensional bodies. Arch Meteorol Geophys Bioklimatol Ser Meteorol Geophys 27:195–215. https://doi.org/10.1007/BF02246695

    Article  Google Scholar 

  • Götze H, Lahmeyer B (1988) Application of three-dimensional interactive modeling in gravity and magnetics. Geophysics 53:1096–1108. https://doi.org/10.1190/1.1442546

    Article  Google Scholar 

  • Gregori DA, Kostadinoff J, Strazzere L, Raniolo A (2008) Tectonic significance and consequences of the Gondwanide orogeny in northern Patagonia, Argentina. Gondwana Res 14:429–450. https://doi.org/10.1016/j.gr.2008.04.005

    Article  Google Scholar 

  • Harrington HJ (1947) Explicación de las Hojas Geológicas 33 m y 34 m, Sierra de Curamalal y de la Ventana, Provincia de Buenos Aires. Serv Nac Miner Geol Boletín 61:56

    Google Scholar 

  • Harrington HJ (1970) Las Sierras Australes de la Provincia de Buenos Aires. Rev Asoc Geol Argent 25:151–181

    Google Scholar 

  • Ince ES, Barthelmes F, Reißland S, Elger K, Förste C, Flechtner F, Schuh H (2019) ICGEM-15 years of successful collection and distribution of global gravitational models, associated services and future plans. Earth Syst Sci Data 11(2):647–674. https://doi.org/10.5194/essd-2019-17

    Article  Google Scholar 

  • Iñiguez AM, Andreis RR (1971) Caracteres sedimentológicos de la Formación Bonete, Sierras Australes de la provincia de Buenos Aires. Reun. In: Geológica las Sierras Australes Bonaerenses. Prov. Buenos Aires. Com. Investig. Científicas. La Plata, pp 103–120.

  • Introcaso A, Ghidella ME, Ruiz F, Crovetto CB, Introcaso B, Paterlini CM (2008) Métodos gravi-magnetométricos modernos para analizar las características estructurales de la plataforma continental argentina. Geoacta 33:1–20

    Google Scholar 

  • Japas MS (1989) La deformación de la cadena plegada de las Sierras Australes de la provincia de Buenos Aires. An. la Acad. Nac Ciencias Exactas Físicas Nat 40:193–215

    Google Scholar 

  • Japas MS (1999) Revisión de las teorías acerca del origen del arco de las Sierras Australes de Buenos Aires. Rev Asoc Geol Argent 54(1):9–22

    Google Scholar 

  • Japas MS, Sellés-Martinez J (1998) Análisis de la microfábrica deformacional de los “Pórfidos Riolíticos” en el área de basamento de Pigüé, Sierras Australes de Buenos Aires. Rev Asoc Geol Argent 53(3):317–324

    Google Scholar 

  • Juan RC, de Jager J, Russell J, Gebhard I (1996) Flanco norte de la Cuenca del Colorado. In: 13rd Congr. Geológico Argentino 3rd Congr. Explor. Hidrocarburos (Buenos Aires, Argentina). Ramos VA, Turic MA (eds) Geol. y Recur. Nat. la Plataforma Cont. Argentina, Relat., pp 117–133

  • Kelley ML, Light MPR (1993) Basin evolution and prospectiveity of the Argentine continental margin. J Pet Geol 16(4):451–464

    Article  Google Scholar 

  • Kilmurray J (1968) Petrología de las rocas ígneas de las Sierras Australes de la Provincia de Buenos Aires. In: Revista Museo de la Plata, Geología. 6: 155–188

  • Kostadinoff J (2007) Evidencia geofísica del umbral de Trenque Lauquen en la extensión norte de la cuenca de Claromecó, provincia de Buenos Aires. Rev Asoc Geol Argent 62:69–75

    Google Scholar 

  • Kostadinoff J, Prozzi C (1998) Cuenca de Claromecó. Rev Asoc Geol Argent 53(4):461–468

    Google Scholar 

  • Lesta P, Sylwan C (2005).Cuenca de Claromecó. In: Chebli GA, Cortiñas JS, Spalletti LA, Legarreta L, Vallejo EL (eds) Frontera Exploratoria de la Argentina. 6° Congr. Explor. y Desarro. Hidrocarburos. 10: 217–231

  • Loegering MJ, Anka Z, Autin J, Primio R, Marchal D, Rodriguez JF, Franke D, Vallejo E (2013) Tectonic evolution of the Colorado Basin, offshore Argentina, inferred from seismo-stratigraphy and depositional rates analysis. Tectonophysics 604:245–263. https://doi.org/10.1016/j.tecto.2013.02.008

    Article  Google Scholar 

  • López-Gamundí OR, Rossello EA (1998) Basin fill evolution and palaeotectonic patterns along the Samfrau geosyncline: the Sauce Grande Basin-Ventanafoldbelt (Argentina) and Karoo Basin-Cape foldbelt (South Africa). Geol Rundschau 86:819–834

    Article  Google Scholar 

  • López-Gamundí OR, Conaghan P, Rossello EA, Cobbold PR (1995) The Tunas Formation (Permian) in the Sierras Australes Foldbelt, East-Central Argentina: evidence of syntectonic sedimentation in a Varisican foreland basin. J S Am Earth Sci 8:129–142

    Article  Google Scholar 

  • López-Gamundí O, Fildani A, Weislogel A, Rossello E (2013) The age of the Tunas formation in the Sauce Grande basin-Ventana foldbelt (Argentina): Implications for the Permian evolution of the southwestern margin of Gondwana. J S Am Earth Sci 45:250–258. https://doi.org/10.1016/j.jsames.2013.03.011

    Article  Google Scholar 

  • Lovecchio JP, Rohais S, Joseph P, Bolatti ND, Kress PR, Gerster R, Ramos VA (2018) Multistage rifting evolution of the Colorado basin (offshore Argentina): evidence for extensional settings prior to the South Atlantic opening. Terra Nov. 30:359–368. https://doi.org/10.1111/ter.12351

    Article  Google Scholar 

  • Marchal and Dominguez, 2011Marcha D, Dominguez F (2011) Estudio Regional del Margen Passivo Argentino. In: Inf. Confidencial, Petrobras Argentina S.A

  • Max MD, Ghidella M, Kovacs L, Paterlini M, Valladares JA (1999) Geology of the Argentine continental shelf and margin from aeromagnetic survey. Mar Pet Geol 16:41–64. https://doi.org/10.1016/S0264-8172(98)00063-4

    Article  Google Scholar 

  • Miller W, de Wit MJ, Linol B, Armstrong R (2016) New structural data and U/Pb dates from the gamtoos complex and lowermost cape supergroup of the Eastern Cape Fold Belt, in Support of a southward Paleo-Subduction Polarity. In: Linol B, Wit MJ (eds) Orig. Evol. Cape Mt. Karoo Basin, Reg. Geol. Rev. Springer, Cham, pp 35–44

    Google Scholar 

  • Oyhantçabal P, Siegesmund S, Wemmer K (2011) The Río de la Plata Craton: a review of units, boundaries, ages and isotopic signature. Int J Earth Sci 100:201–220. https://doi.org/10.1007/s00531-010-0580-8

    Article  Google Scholar 

  • Pángaro F (2013) Las cuencas paleozoicas episuturales del margen atlántico de la provincia de Buenos Aires y su control sobre la apertura atlántica. Dep. Ciencias Geológicas, Fac. Ciencias Exactas y Nat. Univ. Buenos Aires. Ph.D. thesis, p 300

  • Pángaro F, Ramos VA (2012) Paleozoic crustal blocks of onshore and offshore central Argentina: New pieces of the southwestern Gondwana collage and their role in the accretion of Patagonia and the evolution of Mesozoic south Atlantic sedimentary basins. Mar Pet Geol 37:162–183. https://doi.org/10.1016/j.marpetgeo.2012.05.010

    Article  Google Scholar 

  • Pángaro F, Ramos VA, Pazos PJ (2015) The Hesperides basin: a continentalscale upper Palaeozoic to Triassic basin in southern Gondwana. Basin Res 28:685–711. https://doi.org/10.1111/bre.12126

    Article  Google Scholar 

  • Pankhurst RJ, Rapela CW, Lopez De Luchi MG, Rapalini AE, Fanning CM, Galindo C (2014) The Gondwana connections of northern Patagonia. J Geol Soc Lond 171:313–328. https://doi.org/10.1144/jgs2013-081

    Article  Google Scholar 

  • Paton DA, Mortimer EJ, Hodgson N, Van Der Spuy D (2017) The missing piece of the South Atlantic jigsaw: When continental break-up ignores crustal heterogeneity. Geol Soc Spec Publ 438:195–210. https://doi.org/10.1144/SP438.8

    Article  Google Scholar 

  • Prezzi C, Vizán H, Van Zele MA, Renda E (2013) Deformación De Las Sierras Australes, Provincia De Buenos Aires. Latinmag Lett 3:1–5

    Google Scholar 

  • Prezzi CB, Vizán H, Vázquez S, Renda E, Oriolo S, Japas MS (2018) Evolution of the Paleozoic Claromecó Basin (Argentina) and geodynamic implications for the southwestern margin of Gondwana: Insights from isostatic, gravimetric and magnetometric models. Tectonophysics. https://doi.org/10.1016/j.tecto.2018.05.025

    Article  Google Scholar 

  • Rabinowitz PD, Labrecque J (1979) The Mesozoic South Atlantic Ocean and evolution of its continental marings. J Geophys Res 84(B11):5973–6002

    Article  Google Scholar 

  • Ramos VA (1984) Patagonia: un continente paleozoico a la deriva. In: ° Congr. Geológico Argentino (San Carlos Bariloche). Actas, 2, 311–325, Buenos Aires.

  • Ramos VA (2008) Patagonia: a paleozoic continent adrift? J South Am Earth Sci 26:235–251. https://doi.org/10.1016/j.jsames.2008.06.002

    Article  Google Scholar 

  • Ramos VA, Turic MA (1996) Geologia y Recursos Naturales de la Plataforma Continental Argentina. In: Asoc. Geológica Argentina e Inst. Argentino del Pet., p 452

  • Ramos VA, Kostadinoff J (2005) La cuenca de Claromecó. In: de Barrio RE, Echeverri RO, Caballé MF, Llambías E (eds) Geología y recursos minerales de la provincia de Buenos Aires. 6° Congr. Geológico Argentino Relatorio, pp 473–480, La Plata

  • Ramos VA, Naipauer M (2014) Patagonia: Where does it come from? J Iber Geol 40:367–379. https://doi.org/10.5209/rev_JIGE.2014.v40.n2.45304

    Article  Google Scholar 

  • Ramos VA, Chemale F, Naipauer M, Pazos PJ (2014) A provenance study of the Paleozoic Ventania System (Argentina): transient complex sources from Western and Eastern Gondwana. Gondwana Res 26:719–740. https://doi.org/10.1016/j.gr.2013.07.008

    Article  Google Scholar 

  • Rapalini AE, López de Luchi M, Martínez Dopico C, Lince Klinger F, Giménez M, Martínez P (2010) Did Patagonia collide with Gondwana in the late Paleozoic? Some insights from a multidisciplinary study of magmatic units of the North Patagonian Massif. Geol Acta 8:349–371. https://doi.org/10.1344/105.000001577

    Article  Google Scholar 

  • Rapalini AE, de Luchi ML, Tohver E, Cawood PA (2013) The South American ancestry of the North Patagonian Massif: Geochronological evidence for an autochthonous origin? Terra Nova 25:337–342. https://doi.org/10.1111/ter.12043

    Article  Google Scholar 

  • Rapela CW, Pankhurst RJ, Fanning CM, Grecco LE (2003) Basement evolution of the Sierra de la Ventana Fold Belt: new evidence for Cambrian continental rifting along the southern margin of Gondwana. J Geol Soc Lond 160:613–628. https://doi.org/10.1144/0016-764902-112

    Article  Google Scholar 

  • Rapela CW, Fanning CM, Casquet C, Pankhurst RJ, Spalletti L, Poiré D, Baldo EG (2011) The Rio de la Plata craton and the adjoining PanAfrican/brasiliano terranes: Their origins and incorporation into south-west Gondwana. Gondwana Res 20:673–690. https://doi.org/10.1016/j.gr.2011.05.001

    Article  Google Scholar 

  • Rosa M (2015) Tomografía de Ondas Superficiales en Sudamérica: Estructura Litosférica en la Cuenca Chaco-Paraná. Tesis Dr. Fac. Ciencias Astronómicas y Geofísicas, UNLP, p 194

  • Rossello EA, Massabie AC, López-Gamundí OR, Cobbold PR, Gapais D (1997) Late Paleozoic transpression in Buenos Aires and northeast Patagonia ranges, Argentina. J S Am Earth Sci 10:389–402. https://doi.org/10.1016/S0895-9811(97)00028-X

    Article  Google Scholar 

  • Ruíz F, Introcaso A (2011) Study of the Claromecó Basin from gravity, magnetic and geoid undulation charts. Boletín Inst Fisiogr Geol 79–81:95–106

    Google Scholar 

  • Schillizzi RA, Kostadinoff J (1985) Basamento geofísico del área suroccidental de las Sierras Australes, provincia de Buenos Aires. Prim J Geol Bonaer Actas 1055:1067

    Google Scholar 

  • Sellés-Martinez J (1989a) The structure of the Sierras Australes (Buenos Aires province, Argentina): an example of folding in a transpressive enviroment. J S Am Earth Sci 3(4):317–329

    Article  Google Scholar 

  • Sellés-Martinez J (1989b) The structure of Sierras Australes (Buenos Aires, Argentina). An example of folding in a transpressive environment. J S Am Earth Sci 2(4):317–329

    Article  Google Scholar 

  • Sellés-Martinez J (2001) The geology of Ventania (Buenos Aires Province, Argentina). J Iber Geol 27:43–69

    Google Scholar 

  • Shearer PM (2019) Introduction to seismology. Cambridge Univ. Press, Cambridge

    Book  Google Scholar 

  • Sibuet JC, Hay WW, Prunier A, Montadert L, Hinz K, Fritsch J (1984) Early evolution of the South Atlantic Ocean: role of rifting episode. DSDP LXXV:483–508

    Google Scholar 

  • Sippel J, Meeßen C, Cacace M, Mechie J, Fishwick S, Heine C, Scheck-Wenderoth M, Strecker MR (2017) The Kenya rift revisited: Insights into lithospheric strength through data-driven 3-D gravity and thermal modelling. Solid Earth 8:45–81. https://doi.org/10.5194/se-8-45-2017

    Article  Google Scholar 

  • Tohver E, Cawood PA, Rossello EA, Jourdan F (2012) Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: evidence from the Sierras Australes of the southernmost Rio de la Plata craton, Argentina. Gondwana Res 21:394–405. https://doi.org/10.1016/j.gr.2011.04.001

    Article  Google Scholar 

  • Tomezzoli RN (2012) Chilenia y Patagonia: ¿un mismo continente a la deriva? Rev la Asoc Geol Argent 69:222–239

    Google Scholar 

  • Tomezzoli RN, Vilas JF (1999) Paleomagnetic constraints on age of deformation of the Sierras Australes thrust and fold belt, Argentina. Geophys J Int 138:857–870

    Article  Google Scholar 

  • Tomezzoli RN, Cristallini EO (2004) Secciones estructurales de Las Sierras Australes de la provincia de Buenos Aires: Repetición de la secuencia estratigráfica a partir de fallas inversas? Rev la Asoc Geol Argent 59:330–340

    Google Scholar 

  • Tomezzoli RN, Arzadún G, Cristallini EO (2017) Anisotropía de susceptibilidad magnética y paleomagnetismo en la formación lolén de edad devónica, sierras australes de la provincia de buenos aires. Rev la Asoc Geol Argent 74:326–337

    Google Scholar 

  • Uliana MA, Biddle KT (1987) Permian to Late Cenozoic evolution of Patagonia, main tectonic events, magmatic activity, and depositional trends. In: McKenzie GD (ed) Gondwana six struct. tectonics, Geophys. Am. Geophys. Monogr., Washington DC, pp 271–286

    Google Scholar 

  • Uriz NJ, Cingolani CA, Chemale F Jr, Macambira MB, Armstrong R (2010) Isotopic studies on detrital zircons of SilurianeDevonian siliciclastic sequencesfrom Argentinean North Patagonia and Sierra de la Ventana regions: comparative provenance. Int J Earth Sci 100:571–589

    Article  Google Scholar 

  • Villella JC, Pacino M (2010) Interpolación gravimétrica para el cálculo de los números geopotenciales de la red altimétrica de Argentina en zonas de alta montaña. Geoacta 35:13–26

    Google Scholar 

  • Vizan H, Prezzi C, Geuna S, Japas MS, Renda E, Franzese J, Van Zele A (2017) Paleotethys slab pull, self-lubricated weak lithospheric zones, poloidal and toroidal plate motions, and Gondwana tectonics. Geosphere 13(5):1541–1554

    Article  Google Scholar 

  • Von Gosen W, Buggisch WE, Krumm S (1989) Metamorphism and deformation mechanisms in the Sierras Australes fold and thrust belt (Buenos Aires Province, Argentina). Tectonophysics 185:335–356

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Argentine Agency of Scientific and Technological Promotion (ANPCyT) PICT 2016-0709 and the University of Potsdam, Germany which had granted a fellowship during the 2018 winter semester, from October 1st to March 15th. This research could not have been achieved without the help of the section 4.5 Basin Modelling of the GFZ institute where the main results of this paper were carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Vazquez Lucero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazquez Lucero, S.E., Prezzi, C., Scheck-Wenderoth, M. et al. 3D gravity modelling of Colorado and Claromecó basins: new evidences for the evolution of the southwestern margin of Gondwana. Int J Earth Sci (Geol Rundsch) 110, 2295–2313 (2021). https://doi.org/10.1007/s00531-020-01944-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01944-3

Keywords

Navigation