Skip to main content

Advertisement

Log in

Molecular mechanisms of pancreatic myofibroblast activation in chronic pancreatitis and pancreatic ductal adenocarcinoma

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Pancreatic fibrosis (PF) is an essential component of the pathobiology of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). Activated pancreatic myofibroblasts (PMFs) are crucial for the deposition of the extracellular matrix, and fibrotic reaction in response to sustained signaling. Consequently, understanding of the molecular mechanisms of PMF activation is not only critical for understanding CP and PDAC biology but is also a fertile area of research for the development of novel therapeutic strategies for pancreatic pathologies. This review analyzes the key signaling events that drive PMF activation including, initiating signals from transforming growth factor-β1, platelet derived growth factor, as well as other microenvironmental cues, like hypoxia and extracellular matrix rigidity. Further, we discussed the intracellular signal events contributing to PMF activation, and crosstalk with different components of tumor microenvironment. Additionally, association of epidemiologically established risk factors for CP and PDAC, like alcohol intake, tobacco exposure, and metabolic factors with PMF activation, is discussed to comprehend the role of lifestyle factors on pancreatic pathologies. Overall, this analysis provides insight into the biology of PMF activation and highlights salient features of this process, which offer promising therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beyer G, Habtezion A, Werner J, et al. Chronic pancreatitis. Lancet. 2020;396:499–512.

    Article  PubMed  Google Scholar 

  2. Levy P, Dominguez-Munoz E, Imrie C, et al. Epidemiology of chronic pancreatitis: burden of the disease and consequences. United Eur Gastroenterol J. 2014;2:345–54.

    Article  Google Scholar 

  3. Yadav D, Lowenfels AB. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144:1252–61.

    Article  PubMed  Google Scholar 

  4. Yadav D, Timmons L, Benson JT, et al. Incidence, prevalence, and survival of chronic pancreatitis: a population-based study. Am J Gastroenterol. 2011;106:2192–9.

    Article  PubMed  Google Scholar 

  5. Hirota M, Shimosegawa T, Masamune A, et al. The seventh nationwide epidemiological survey for chronic pancreatitis in Japan: clinical significance of smoking habit in Japanese patients. Pancreatology. 2014;14:490–6.

    Article  PubMed  Google Scholar 

  6. Machicado JD, Dudekula A, Tang G, et al. Period prevalence of chronic pancreatitis diagnosis from 2001–2013 in the commercially insured population of the United States. Pancreatology. 2019;19:813–8.

    Article  PubMed  Google Scholar 

  7. Capurso G, Archibugi L, Pasquali P, et al. Prevalence of chronic pancreatitis: results of a primary care physician-based population study. Dig Liver Dis. 2017;49:535–9.

    Article  PubMed  Google Scholar 

  8. Wang LW, Li ZS, Li SD, et al. Prevalence and clinical features of chronic pancreatitis in China: a retrospective multicenter analysis over 10 years. Pancreas. 2009;38:248–54.

    Article  CAS  PubMed  Google Scholar 

  9. Stamm BH. Incidence and diagnostic significance of minor pathologic changes in the adult pancreas at autopsy: a systematic study of 112 autopsies in patients without known pancreatic disease. Hum Pathol. 1984;15:677–83.

    Article  CAS  PubMed  Google Scholar 

  10. Pitchumoni CS, Glasser M, Saran RM, et al. Pancreatic fibrosis in chronic alcoholics and nonalcoholics without clinical pancreatitis. Am J Gastroenterol. 1984;79:382–8.

    CAS  PubMed  Google Scholar 

  11. van Geenen EJ, Smits MM, Schreuder TC, et al. Smoking is related to pancreatic fibrosis in humans. Am J Gastroenterol. 2011;106:1161–6 (quiz 1167).

    Article  PubMed  Google Scholar 

  12. Levy P, Milan C, Pignon JP, et al. Mortality factors associated with chronic pancreatitis. Unidimensional and multidimensional analysis of a medical-surgical series of 240 patients. Gastroenterology. 1989;96:1165–72.

    Article  CAS  PubMed  Google Scholar 

  13. Fasanella KE, Davis B, Lyons J, et al. Pain in chronic pancreatitis and pancreatic cancer. Gastroenterol Clin N Am. 2007;36:335ix-ix364.

    Article  Google Scholar 

  14. DiMagno EP, Go VL, Summerskill WH. Relations between pancreatic enzyme outputs and malabsorption in severe pancreatic insufficiency. N Engl J Med. 1973;288:813–5.

    Article  CAS  PubMed  Google Scholar 

  15. A. American Diabetes. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36(Suppl 1):S67-74.

    Article  Google Scholar 

  16. Ewald N, Hardt PD. Diagnosis and treatment of diabetes mellitus in chronic pancreatitis. World J Gastroenterol. 2013;19:7276–81.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Raimondi S, Lowenfels AB, Morselli-Labate AM, et al. Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection. Best Pract Res Clin Gastroenterol. 2010;24:349–58.

    Article  PubMed  Google Scholar 

  18. SEER Cancer Statisitics Review, 1975–2017. In: Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, Rhul J, Tatalovish Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (Eds.) The National Cancer Institute, https://seer.cancer.gov/csr/1975_2017/, 2020.

  19. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  20. Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.

    Article  CAS  PubMed  Google Scholar 

  21. Hall BR, Cannon A, Atri P, et al. Advanced pancreatic cancer: a meta-analysis of clinical trials over thirty years. Oncotarget. 2018;9:19396–405.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Apte MV, Wilson JS, Lugea A, et al. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology. 2013;144:1210–9.

    Article  PubMed  Google Scholar 

  23. Sherman MH, Yu RT, Engle DD, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159:80–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Masamune A, Hamada S, Kikuta K, et al. The angiotensin II type I receptor blocker olmesartan inhibits the growth of pancreatic cancer by targeting stellate cell activities in mice. Scand J Gastroenterol. 2013;48:602–9.

    Article  CAS  PubMed  Google Scholar 

  25. Provenzano PP, Cuevas C, Chang AE, et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21:418–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cannon A, Thompson C, Hall BR, et al. Desmoplasia in pancreatic ductal adenocarcinoma: insight into pathological function and therapeutic potential. Genes Cancer. 2018;9:78–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bachem MG, Schneider E, Gross H, et al. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology. 1998;115:421–32.

    Article  CAS  PubMed  Google Scholar 

  28. Apte MV, Haber PS, Applegate TL, et al. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut. 1998;43:128–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Apte MV, Haber PS, Darby SJ, et al. Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis. Gut. 1999;44:534–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yen TW, Aardal NP, Bronner MP, et al. Myofibroblasts are responsible for the desmoplastic reaction surrounding human pancreatic carcinomas. Surgery. 2002;131:129–34.

    Article  PubMed  Google Scholar 

  31. Chauhan VP, Martin JD, Liu H, et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun. 2013;4:2516.

    Article  PubMed  CAS  Google Scholar 

  32. Haber PS, Keogh GW, Apte MV, et al. Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. Am J Pathol. 1999;155:1087–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marrache F, Pendyala S, Bhagat G, et al. Role of bone marrow-derived cells in experimental chronic pancreatitis. Gut. 2008;57:1113–20.

    Article  CAS  PubMed  Google Scholar 

  34. Sparmann G, Kruse ML, Hofmeister-Mielke N, et al. Bone marrow-derived pancreatic stellate cells in rats. Cell Res. 2010;20:288–98.

    Article  PubMed  Google Scholar 

  35. Akita S, Kubota K, Kobayashi A, et al. Role of bone marrow cells in the development of pancreatic fibrosis in a rat model of pancreatitis induced by a choline-deficient/ethionine-supplemented diet. Biochem Biophys Res Commun. 2012;420:743–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ino K, Masuya M, Tawara I, et al. Monocytes infiltrate the pancreas via the MCP-1/CCR2 pathway and differentiate into stellate cells. PLoS ONE. 2014;9:e84889.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Scarlett CJ, Colvin EK, Pinese M, et al. Recruitment and activation of pancreatic stellate cells from the bone marrow in pancreatic cancer: a model of tumor-host interaction. PLoS ONE. 2011;6:e26088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vogelmann R, Ruf D, Wagner M, et al. Effects of fibrogenic mediators on the development of pancreatic fibrosis in a TGF-beta1 transgenic mouse model. Am J Physiol Gastrointest Liver Physiol. 2001;280:G164–72.

    Article  CAS  PubMed  Google Scholar 

  39. Kruse ML, Hildebrand PB, Timke C, et al. TGFbeta1 autocrine growth control in isolated pancreatic fibroblastoid cells/stellate cells in vitro. Regul Pept. 2000;90:47–52.

    Article  CAS  PubMed  Google Scholar 

  40. Luttenberger T, Schmid-Kotsas A, Menke A, et al. Platelet-derived growth factors stimulate proliferation and extracellular matrix synthesis of pancreatic stellate cells: implications in pathogenesis of pancreas fibrosis. Lab Invest. 2000;80:47–55.

    Article  CAS  PubMed  Google Scholar 

  41. Schneider E, Schmid-Kotsas A, Zhao J, et al. Identification of mediators stimulating proliferation and matrix synthesis of rat pancreatic stellate cells. Am J Physiol Cell Physiol. 2001;281:C532–43.

    Article  CAS  PubMed  Google Scholar 

  42. Yoo BM, Yeo M, Oh TY, et al. Amelioration of pancreatic fibrosis in mice with defective TGF-beta signaling. Pancreas. 2005;30:e71–9.

    Article  PubMed  Google Scholar 

  43. Nagashio Y, Ueno H, Imamura M, et al. Inhibition of transforming growth factor beta decreases pancreatic fibrosis and protects the pancreas against chronic injury in mice. Lab Invest. 2004;84:1610–8.

    Article  CAS  PubMed  Google Scholar 

  44. Bachem MG, Schunemann M, Ramadani M, et al. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology. 2005;128:907–21.

    Article  CAS  PubMed  Google Scholar 

  45. Lohr M, Schmidt C, Ringel J, et al. Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Res. 2001;61:550–5.

    CAS  PubMed  Google Scholar 

  46. Phillips PA, Wu MJ, Kumar RK, et al. Cell migration: a novel aspect of pancreatic stellate cell biology. Gut. 2003;52:677–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McCarroll JA, Phillips PA, Kumar RK, et al. Pancreatic stellate cell migration: role of the phosphatidylinositol 3-kinase(PI3-kinase) pathway. Biochem Pharmacol. 2004;67:1215–25.

    Article  CAS  PubMed  Google Scholar 

  48. Tian H, Callahan CA, DuPree KJ, et al. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci USA. 2009;106:4254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bailey JM, Swanson BJ, Hamada T, et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res. 2008;14:5995–6004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rhim AD, Oberstein PE, Thomas DH, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25:735–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee JJ, Perera RM, Wang H, et al. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci U S A. 2014;111:E3091–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gao R, Brigstock DR. Connective tissue growth factor (CCN2) in rat pancreatic stellate cell function: integrin alpha5beta1 as a novel CCN2 receptor. Gastroenterology. 2005;129:1019–30.

    Article  CAS  PubMed  Google Scholar 

  53. Karger A, Fitzner B, Brock P, et al. Molecular insights into connective tissue growth factor action in rat pancreatic stellate cells. Cell Signal. 2008;20:1865–72.

    Article  CAS  PubMed  Google Scholar 

  54. di Mola FF, Friess H, Martignoni ME, et al. Connective tissue growth factor is a regulator for fibrosis in human chronic pancreatitis. Ann Surg. 1999;230:63–71.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gao R, Brigstock DR. A novel integrin alpha5beta1 binding domain in module 4 of connective tissue growth factor (CCN2/CTGF) promotes adhesion and migration of activated pancreatic stellate cells. Gut. 2006;55:856–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wenger C, Ellenrieder V, Alber B, et al. Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene. 1999;18:1073–80.

    Article  CAS  PubMed  Google Scholar 

  57. Schmid-Kotsas A, Gross HJ, Menke A, et al. Lipopolysaccharide-activated macrophages stimulate the synthesis of collagen type I and C-fibronectin in cultured pancreatic stellate cells. Am J Pathol. 1999;155:1749–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xue J, Sharma V, Hsieh MH, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun. 2015;6:7158.

    Article  CAS  PubMed  Google Scholar 

  59. Sparmann G, Glass A, Brock P, et al. Inhibition of lymphocyte apoptosis by pancreatic stellate cells: impact of interleukin-15. Am J Physiol Gastrointest Liver Physiol. 2005;289:G842–51.

    Article  CAS  PubMed  Google Scholar 

  60. Incio J, Liu H, Suboj P, et al. Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov. 2016;6:852–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mews P, Phillips P, Fahmy R, et al. Pancreatic stellate cells respond to inflammatory cytokines: potential role in chronic pancreatitis. Gut. 2002;50:535–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marzoq AJ, Giese N, Hoheisel JD, et al. Proteome variations in pancreatic stellate cells upon stimulation with proinflammatory factors. J Biol Chem. 2013;288:32517–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Das S, Shapiro B, Vucic EA, et al. Tumor cell-derived IL1beta promotes desmoplasia and immune suppression in pancreatic cancer. Cancer Res. 2020;80:1088–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Aoki H, Ohnishi H, Hama K, et al. Cyclooxygenase-2 is required for activated pancreatic stellate cells to respond to proinflammatory cytokines. Am J Physiol Cell Physiol. 2007;292:C259–68.

    Article  CAS  PubMed  Google Scholar 

  65. Yoshida S, Ujiki M, Ding XZ, et al. Pancreatic stellate cells (PSCs) express cyclooxygenase-2 (COX-2) and pancreatic cancer stimulates COX-2 in PSCs. Mol Cancer. 2005;4:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Sun L, Chen K, Jiang Z, et al. Indometacin inhibits the proliferation and activation of human pancreatic stellate cells through the downregulation of COX-2. Oncol Rep. 2018;39:2243–51.

    CAS  PubMed  Google Scholar 

  67. Charo C, Holla V, Arumugam T, et al. Prostaglandin E2 regulates pancreatic stellate cell activity via the EP4 receptor. Pancreas. 2013;42:467–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pomianowska E, Sandnes D, Grzyb K, et al. Inhibitory effects of prostaglandin E2 on collagen synthesis and cell proliferation in human stellate cells from pancreatic head adenocarcinoma. BMC Cancer. 2014;14:413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Philip B, Roland CL, Daniluk J, et al. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice. Gastroenterology. 2013;145:1449–58.

    Article  CAS  PubMed  Google Scholar 

  70. Huang H, Chen J, Peng L, et al. Transgenic expression of cyclooxygenase-2 in pancreatic acinar cells induces chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2019;316:G179–86.

    Article  CAS  PubMed  Google Scholar 

  71. Masamune A, Kikuta K, Watanabe T, et al. Pancreatic stellate cells express Toll-like receptors. J Gastroenterol. 2008;43:352–62.

    Article  CAS  PubMed  Google Scholar 

  72. Masamune A, Kikuta K, Watanabe T, et al. Fibrinogen induces cytokine and collagen production in pancreatic stellate cells. Gut. 2009;58:550–9.

    Article  CAS  PubMed  Google Scholar 

  73. Kunzli BM, Nuhn P, Enjyoji K, et al. Disordered pancreatic inflammatory responses and inhibition of fibrosis in CD39-null mice. Gastroenterology. 2008;134:292–305.

    Article  CAS  PubMed  Google Scholar 

  74. Miller-Ocuin JL, Liang X, Boone BA, et al. DNA released from neutrophil extracellular traps (NETs) activates pancreatic stellate cells and enhances pancreatic tumor growth. Oncoimmunology. 2019;8:e1605822.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Masamune A, Kikuta K, Watanabe T, et al. Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2008;295:G709–17.

    Article  CAS  PubMed  Google Scholar 

  76. Erkan M, Reiser-Erkan C, Michalski CW, et al. Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia. 2009;11:497–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Eguchi D, Ikenaga N, Ohuchida K, et al. Hypoxia enhances the interaction between pancreatic stellate cells and cancer cells via increased secretion of connective tissue growth factor. J Surg Res. 2013;181:225–33.

    Article  CAS  PubMed  Google Scholar 

  78. Sada M, Ohuchida K, Horioka K, et al. Hypoxic stellate cells of pancreatic cancer stroma regulate extracellular matrix fiber organization and cancer cell motility. Cancer Lett. 2016;372:210–8.

    Article  CAS  PubMed  Google Scholar 

  79. Jesnowski R, Furst D, Ringel J, et al. Immortalization of pancreatic stellate cells as an in vitro model of pancreatic fibrosis: deactivation is induced by matrigel and N-acetylcysteine. Lab Invest. 2005;85:1276–91.

    Article  CAS  PubMed  Google Scholar 

  80. Lachowski D, Cortes E, Pink D, et al. Substrate rigidity controls activation and durotaxis in pancreatic stellate cells. Sci Rep. 2017;7:2506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wells RG, Discher DE. Matrix elasticity, cytoskeletal tension, and TGF-beta: the insoluble and soluble meet. Sci Signal. 2008;1:pe13.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Klingberg F, Chow ML, Koehler A, et al. Prestress in the extracellular matrix sensitizes latent TGF-beta1 for activation. J Cell Biol. 2014;207:283–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wipff PJ, Rifkin DB, Meister JJ, et al. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol. 2007;179:1311–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sarper M, Cortes E, Lieberthal TJ, et al. ATRA modulates mechanical activation of TGF-beta by pancreatic stellate cells. Sci Rep. 2016;6:27639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Calvo F, Ege N, Grande-Garcia A, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15:637–46.

    Article  CAS  PubMed  Google Scholar 

  86. Laklai H, Miroshnikova YA, Pickup MW, et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med. 2016;22:497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Elosegui-Artola A, Andreu I, Beedle AEM, et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell. 2017;171:1397 e14-1410 e14.

    Article  CAS  Google Scholar 

  88. Hu C, Yang J, Su HY, et al. Yes-associated protein 1 plays major roles in pancreatic stellate cell activation and fibroinflammatory responses. Front Physiol. 2019;10:1467.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Xiao Y, Zhang H, Ma Q, et al. YAP1-mediated pancreatic stellate cell activation inhibits pancreatic cancer cell proliferation. Cancer Lett. 2019;462:51–60.

    Article  CAS  PubMed  Google Scholar 

  90. Morvaridi S, Dhall D, Greene MI, et al. Role of YAP and TAZ in pancreatic ductal adenocarcinoma and in stellate cells associated with cancer and chronic pancreatitis. Sci Rep. 2015;5:16759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fels B, Nielsen N, Schwab A. Role of TRPC1 channels in pressure-mediated activation of murine pancreatic stellate cells. Eur Biophys J. 2016;45:657–70.

    Article  CAS  PubMed  Google Scholar 

  92. Storck H, Hild B, Schimmelpfennig S, et al. Ion channels in control of pancreatic stellate cell migration. Oncotarget. 2017;8:769–84.

    Article  PubMed  Google Scholar 

  93. Kuntze A, Goetsch O, Fels B, et al. Protonation of piezo1 impairs cell-matrix interactions of pancreatic stellate cells. Front Physiol. 2020;11:89.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ottonello S, Scita G, Mantovani G, et al. Retinol bound to cellular retinol-binding protein is a substrate for cytosolic retinoic acid synthesis. J Biol Chem. 1993;268:27133–42.

    Article  CAS  PubMed  Google Scholar 

  95. Duester G. Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid. Eur J Biochem. 2000;267:4315–24.

    Article  CAS  PubMed  Google Scholar 

  96. Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996;10:940–54.

    Article  CAS  PubMed  Google Scholar 

  97. McCarroll JA, Phillips PA, Santucci N, et al. Vitamin A inhibits pancreatic stellate cell activation: implications for treatment of pancreatic fibrosis. Gut. 2006;55:79–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xiao W, Jiang W, Shen J, et al. Retinoic acid ameliorates pancreatic fibrosis and inhibits the activation of pancreatic stellate cells in mice with experimental chronic pancreatitis via suppressing the Wnt/beta-catenin signaling pathway. PLoS ONE. 2015;10:e0141462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Jaster R, Hilgendorf I, Fitzner B, et al. Regulation of pancreatic stellate cell function in vitro: biological and molecular effects of all-trans retinoic acid. Biochem Pharmacol. 2003;66:633–41.

    Article  CAS  PubMed  Google Scholar 

  100. Kim N, Yoo W, Lee J, et al. Formation of vitamin A lipid droplets in pancreatic stellate cells requires albumin. Gut. 2009;58:1382–90.

    Article  CAS  PubMed  Google Scholar 

  101. Chronopoulos A, Robinson B, Sarper M, et al. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat Commun. 2016;7:12630.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Baumert JT, Sparmann G, Emmrich J, et al. Inhibitory effects of interferons on pancreatic stellate cell activation. World J Gastroenterol. 2006;12:896–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fitzner B, Brock P, Nechutova H, et al. Inhibitory effects of interferon-gamma on activation of rat pancreatic stellate cells are mediated by STAT1 and involve down-regulation of CTGF expression. Cell Signal. 2007;19:782–90.

    Article  CAS  PubMed  Google Scholar 

  104. Rateitschak K, Karger A, Fitzner B, et al. Mathematical modelling of interferon-gamma signalling in pancreatic stellate cells reflects and predicts the dynamics of STAT1 pathway activity. Cell Signal. 2010;22:97–105.

    Article  CAS  PubMed  Google Scholar 

  105. Shen J, Gao J, Chen C, et al. Antifibrotic role of chemokine CXCL9 in experimental chronic pancreatitis induced by trinitrobenzene sulfonic acid in rats. Cytokine. 2013;64:382–94.

    Article  CAS  PubMed  Google Scholar 

  106. Jaster R, Sparmann G, Emmrich J, et al. Extracellular signal regulated kinases are key mediators of mitogenic signals in rat pancreatic stellate cells. Gut. 2002;51:579–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yan Z, Ohuchida K, Fei S, et al. Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer-stromal interaction and metastasis. J Exp Clin Cancer Res. 2019;38:221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Ohnishi H, Miyata T, Yasuda H, et al. Distinct roles of Smad2-, Smad3-, and ERK-dependent pathways in transforming growth factor-beta1 regulation of pancreatic stellate cellular functions. J Biol Chem. 2004;279:8873–8.

    Article  CAS  PubMed  Google Scholar 

  109. Xu XF, Liu F, Xin JQ, et al. Respective roles of the mitogen-activated protein kinase (MAPK) family members in pancreatic stellate cell activation induced by transforming growth factor-beta1 (TGF-beta1). Biochem Biophys Res Commun. 2018;501:365–73.

    Article  CAS  PubMed  Google Scholar 

  110. Yoshida S, Yokota T, Ujiki M, et al. Pancreatic cancer stimulates pancreatic stellate cell proliferation and TIMP-1 production through the MAP kinase pathway. Biochem Biophys Res Commun. 2004;323:1241–5.

    Article  CAS  PubMed  Google Scholar 

  111. Jaster R, Brock P, Sparmann G, et al. Inhibition of pancreatic stellate cell activation by the hydroxymethylglutaryl coenzyme A reductase inhibitor lovastatin. Biochem Pharmacol. 2003;65:1295–303.

    Article  CAS  PubMed  Google Scholar 

  112. Hama K, Ohnishi H, Yasuda H, et al. Angiotensin II stimulates DNA synthesis of rat pancreatic stellate cells by activating ERK through EGF receptor transactivation. Biochem Biophys Res Commun. 2004;315:905–11.

    Article  CAS  PubMed  Google Scholar 

  113. Masamune A, Satoh M, Kikuta K, et al. Inhibition of p38 mitogen-activated protein kinase blocks activation of rat pancreatic stellate cells. J Pharmacol Exp Ther. 2003;304:8–14.

    Article  CAS  PubMed  Google Scholar 

  114. Masamune A, Kikuta K, Suzuki N, et al. A c-Jun NH2-terminal kinase inhibitor SP600125 (anthra[1,9-cd]pyrazole-6 (2H)-one) blocks activation of pancreatic stellate cells. J Pharmacol Exp Ther. 2004;310:520–7.

    Article  CAS  PubMed  Google Scholar 

  115. Masamune A, Kikuta K, Satoh M, et al. Protease-activated receptor-2-mediated proliferation and collagen production of rat pancreatic stellate cells. J Pharmacol Exp Ther. 2005;312:651–8.

    Article  CAS  PubMed  Google Scholar 

  116. Kikuta K, Masamune A, Satoh M, et al. Hydrogen peroxide activates activator protein-1 and mitogen-activated protein kinases in pancreatic stellate cells. Mol Cell Biochem. 2006;291:11–20.

    Article  CAS  PubMed  Google Scholar 

  117. Kikuta K, Masamune A, Satoh M, et al. 4-hydroxy-2, 3-nonenal activates activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells. World J Gastroenterol. 2004;10:2344–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. An W, Zhu JW, Jiang F, et al. Fibromodulin is upregulated by oxidative stress through the MAPK/AP-1 pathway to promote pancreatic stellate cell activation. Pancreatology. 2020;20:278–87.

    Article  CAS  PubMed  Google Scholar 

  119. Masamune A, Kikuta K, Satoh M, et al. Rho kinase inhibitors block activation of pancreatic stellate cells. Br J Pharmacol. 2003;140:1292–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Whatcott CJ, Ng S, Barrett MT, et al. Inhibition of ROCK1 kinase modulates both tumor cells and stromal fibroblasts in pancreatic cancer. PLoS ONE. 2017;12:e0183871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Masamune A, Watanabe T, Kikuta K, et al. NADPH oxidase plays a crucial role in the activation of pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol. 2008;294:G99–108.

    Article  CAS  PubMed  Google Scholar 

  122. Asaumi H, Watanabe S, Taguchi M, et al. Externally applied pressure activates pancreatic stellate cells through the generation of intracellular reactive oxygen species. Am J Physiol Gastrointest Liver Physiol. 2007;293:G972–8.

    Article  CAS  PubMed  Google Scholar 

  123. Xia D, Halder B, Godoy C, et al. NADPH oxidase 1 mediates caerulein-induced pancreatic fibrosis in chronic pancreatitis. Free Radic Biol Med. 2020;147:139–49.

    Article  CAS  PubMed  Google Scholar 

  124. Ryu GR, Lee E, Chun HJ, et al. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells. Biochem Biophys Res Commun. 2013;439:258–63.

    Article  CAS  PubMed  Google Scholar 

  125. Ohnishi N, Miyata T, Ohnishi H, et al. Activin A is an autocrine activator of rat pancreatic stellate cells: potential therapeutic role of follistatin for pancreatic fibrosis. Gut. 2003;52:1487–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Aoki H, Ohnishi H, Hama K, et al. Autocrine loop between TGF-beta1 and IL-1beta through Smad3- and ERK-dependent pathways in rat pancreatic stellate cells. Am J Physiol Cell Physiol. 2006;290:C1100–8.

    Article  CAS  PubMed  Google Scholar 

  127. Aoki H, Ohnishi H, Hama K, et al. Existence of autocrine loop between interleukin-6 and transforming growth factor-beta1 in activated rat pancreatic stellate cells. J Cell Biochem. 2006;99:221–8.

    Article  CAS  PubMed  Google Scholar 

  128. He J, Sun X, Qian KQ, et al. Protection of cerulein-induced pancreatic fibrosis by pancreas-specific expression of Smad7. Biochim Biophys Acta. 2009;1792:56–60.

    Article  CAS  PubMed  Google Scholar 

  129. Kuang C, Xiao Y, Liu X, et al. In vivo disruption of TGF-beta signaling by Smad7 leads to premalignant ductal lesions in the pancreas. Proc Natl Acad Sci USA. 2006;103:1858–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gao X, Cao Y, Staloch DA, et al. Bone morphogenetic protein signaling protects against cerulein-induced pancreatic fibrosis. PLoS ONE. 2014;9:e89114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Gao X, Cao Y, Yang W, et al. BMP2 inhibits TGF-beta-induced pancreatic stellate cell activation and extracellular matrix formation. Am J Physiol Gastrointest Liver Physiol. 2013;304:G804–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Staloch D, Gao X, Liu K, et al. Gremlin is a key pro-fibrogenic factor in chronic pancreatitis. J Mol Med (Berl). 2015;93:1085–93.

    Article  CAS  Google Scholar 

  133. Apte MV, Phillips PA, Fahmy RG, et al. Does alcohol directly stimulate pancreatic fibrogenesis? Studies with rat pancreatic stellate cells. Gastroenterology. 2000;118:780–94.

    Article  CAS  PubMed  Google Scholar 

  134. Masamune A, Kikuta K, Satoh M, et al. Alcohol activates activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells. J Pharmacol Exp Ther. 2002;302:36–42.

    Article  CAS  PubMed  Google Scholar 

  135. Hu R, Wang YL, Edderkaoui M, et al. Ethanol augments PDGF-induced NADPH oxidase activity and proliferation in rat pancreatic stellate cells. Pancreatology. 2007;7:332–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. McCarroll JA, Phillips PA, Park S, et al. Pancreatic stellate cell activation by ethanol and acetaldehyde: is it mediated by the mitogen-activated protein kinase signaling pathway? Pancreas. 2003;27:150–60.

    Article  CAS  PubMed  Google Scholar 

  137. Siech M, Zhou Z, Zhou S, et al. Stimulation of stellate cells by injured acinar cells: a model of acute pancreatitis induced by alcohol and fat (VLDL). Am J Physiol Gastrointest Liver Physiol. 2009;297:G1163–71.

    Article  CAS  PubMed  Google Scholar 

  138. Vonlaufen A, Phillips PA, Xu Z, et al. Withdrawal of alcohol promotes regression while continued alcohol intake promotes persistence of LPS-induced pancreatic injury in alcohol-fed rats. Gut. 2011;60:238–46.

    Article  CAS  PubMed  Google Scholar 

  139. Li Z, Zhang X, Jin T, et al. Nicotine promotes activation of human pancreatic stellate cells through inducing autophagy via alpha7nAChR-mediated JAK2/STAT3 signaling pathway. Life Sci. 2020;243:117301.

    Article  CAS  PubMed  Google Scholar 

  140. Xue J, Zhao Q, Sharma V, et al. Aryl hydrocarbon receptor ligands in cigarette smoke induce production of interleukin-22 to promote pancreatic fibrosis in models of chronic pancreatitis. Gastroenterology. 2016;151:1206–17.

    Article  CAS  PubMed  Google Scholar 

  141. Kuno A, Yamada T, Masuda K, et al. Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Gastroenterology. 2003;124:1010–9.

    Article  CAS  PubMed  Google Scholar 

  142. Yamada T, Kuno A, Masuda K, et al. Candesartan, an angiotensin II receptor antagonist, suppresses pancreatic inflammation and fibrosis in rats. J Pharmacol Exp Ther. 2003;307:17–23.

    Article  CAS  PubMed  Google Scholar 

  143. Nagashio Y, Asaumi H, Watanabe S, et al. Angiotensin II type 1 receptor interaction is an important regulator for the development of pancreatic fibrosis in mice. Am J Physiol Gastrointest Liver Physiol. 2004;287:G170–7.

    Article  CAS  PubMed  Google Scholar 

  144. Liu WB, Wang XP, Wu K, et al. Effects of angiotensin II receptor antagonist, Losartan on the apoptosis, proliferation and migration of the human pancreatic stellate cells. World J Gastroenterol. 2005;11:6489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Reinehr R, Zoller S, Klonowski-Stumpe H, et al. Effects of angiotensin II on rat pancreatic stellate cells. Pancreas. 2004;28:129–37.

    Article  CAS  PubMed  Google Scholar 

  146. Trasino SE, Tang XH, Jessurun J, et al. Obesity leads to tissue, but not serum vitamin A deficiency. Sci Rep. 2015;5:15893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ben-Harosh Y, Anosov M, Salem H, et al. Pancreatic stellate cell activation is regulated by fatty acids and ER stress. Exp Cell Res. 2017;359:76–85.

    Article  CAS  PubMed  Google Scholar 

  148. Ko SH, Hong OK, Kim JW, et al. High glucose increases extracellular matrix production in pancreatic stellate cells by activating the renin-angiotensin system. J Cell Biochem. 2006;98:343–55.

    Article  CAS  PubMed  Google Scholar 

  149. Hong OK, Lee SH, Rhee M, et al. Hyperglycemia and hyperinsulinemia have additive effects on activation and proliferation of pancreatic stellate cells: possible explanation of islet-specific fibrosis in type 2 diabetes mellitus. J Cell Biochem. 2007;101:665–75.

    Article  CAS  PubMed  Google Scholar 

  150. Nomiyama Y, Tashiro M, Yamaguchi T, et al. High glucose activates rat pancreatic stellate cells through protein kinase C and p38 mitogen-activated protein kinase pathway. Pancreas. 2007;34:364–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors/work, in parts, were supported by the NIH grants (F30 CA225117, R21CA223429, R21 AA026428, R44 CA235991, P01 CA217798, Great Plains IDeA-CTR, R01 CA183459, R01 CA210637, and R01 CA228524), and the University of Nebraska Collaboration Initiative/System Science Seed Grant (20063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sushil Kumar or Surinder Kumar Batra.

Ethics declarations

Conflict of interest

SKB is one of the co-founders of the Sanguine Diagnostics and Therapeutics, Inc. The other authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cannon, A., Thompson, C.M., Bhatia, R. et al. Molecular mechanisms of pancreatic myofibroblast activation in chronic pancreatitis and pancreatic ductal adenocarcinoma. J Gastroenterol 56, 689–703 (2021). https://doi.org/10.1007/s00535-021-01800-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-021-01800-4

Keywords

Navigation