Skip to main content
Log in

Mathematical modeling insight of hetero gate dielectric-dual material gate-GAA-tunnel FET for VLSI/analog applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents a mathematical modeling insight for the novel heterogate dielectric-dual material gate-GAA TFET (HD-DMG-GAA-TFET) and validating the results with TCAD simulation. By using the appropriate boundary conditions and continuity equations, the Poisson’s equation is solved to obtain the potential profile. The developed model is used to study the analog performance parameters such as subthreshold swing (SS), threshold voltage (Vth), transconductance (gm), drain conductance (gd), device efficiency (gm/Ids), intrinsic gain (gm/gd), channel resistance (Rch) and output resistance (Ro). Further, to optimize the effect of metal work function on analog performance, three different combinations of DMG configurations has been studied. The results demonstrated that for a difference of 0.4 eV, the analog performance of the device is optimized. Low off current and high value of on current resulting into a higher ION/IOFF ratio has been obtained, which is appropriate for sub-nanometre devices and low standby power applications. The analytical results obtained from the proposed model shows good agreement with the simulated results obtained with the ATLAS device simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ATLAS User’s Manual (2014) SILVACO Int., Santa Clara, CA

  • Bhuwalka KK, Born M, Schindler M, Schmidt M, Sulima T, Eisele I (2006) P-channel tunnel field-effect transistors down to sub-50 nm channel lengths. Jpn J Appl Phys 45:3106–3109. doi:10.1143/JJAP.45.3106

    Article  Google Scholar 

  • Born M, Bhuwalka KK, Schindler M, Abelein U, Schmidt M, Sulima T, Eisele I (2006) Tunnel FET: a CMOS device for high temperature applications. In: Proceedings of 25th international conference on microelectronics, Belgrade, Serbia and Montenegro, pp 124–127. doi:10.1109/ICMEL.2006.1650911

  • Boucart B, Ionescu AM (2007a) Length scaling of the double gate tunnel FET with a high-K gate dielectric. Solid-State Electron 51(12):1500–1507. doi:10.1016/j.sse.2007.09.014

    Article  Google Scholar 

  • Boucart K, Ionescu AM (2007b) Double gate tunnel FET with high-k gate dielectric. IEEE Trans Electron Devices 54(7):1725–1733. doi:10.1109/TED.2007.899389

    Article  Google Scholar 

  • Cho S, Sun MC, Kim G, Kamins TI, Park BG, Harris JS (2011) Design optimization of a type-I heterojunction tunneling field-effect transistor (I-HTFET) for high performance logic technology. J Semicond Technol Sci 11(3):182–189. doi:10.5573/JSTS.2011.11.3.182

    Article  Google Scholar 

  • Choi KM, Choi WY (2013) Work-function variation effects of tunneling field-effect transistors (TFETs). IEEE Electron Device Lett 34(8):942–944. doi:10.1109/LED.2013.2264824

    Article  Google Scholar 

  • Choi WY, Lee W (2010) Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans Electron Devices 57(9):2317–2319. doi:10.1109/TED.2010.2052167

    Article  Google Scholar 

  • Conde AO, Garcia-Sanchez FJ, Muci J, Sucre-Gonzalez A, Martino JA, Agopian PGD, Claeys C (2014) Threshold voltage extraction in tunnel FETs. Solid-State Electron 93:49–55. doi:10.1016/j.sse.2013.12.010

    Article  Google Scholar 

  • Fukuda K, Mori T, Mizubayashi W, Morita Y, Tanabe A, Masahara M, Yasuda T, Migita S, Ota H (2013) A compact model for tunnel field effect transistors incorporating nonlocal band to band tunneling. J Appl Phys 114(14):144512. doi:10.1063/1.4824535

    Article  Google Scholar 

  • Gandhi R, Chen Z, Singh N, Banerjee K, Lee S (2011) CMOS-compatible vertical-silicon-nanowire gate-all-around p-type tunneling FETs with ≤ 50-mV/decade subthreshold swing. IEEE Electron Device Lett 32(11):1504–1506. doi:10.1109/LED.2011.2165331

    Article  Google Scholar 

  • Hraziia Vladimirescu A, Amara A, Anghel C (2012) An analysis on the ambipolar current in Si double–gate tunnel FETs. Solid-State Electron 70:67–72. doi:10.1016/j.sse.2011.11.009

    Article  Google Scholar 

  • Jhaveri R, Nagavarapu V, Woo JCS (2010) Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans Electron Devices 58(1):80–86. doi:10.1109/TED.2010.2089525

    Article  Google Scholar 

  • Lee DS, Yang HS, Kang KC, Lee JE, Lee JH, Cho S, Park BG (2010) Simulation of gate-all-around tunnel field-effect transistor with an n-doped layer. IEICE Trans Electron 93-C(5):540–545. doi:10.1587/transele.E93.C.540

    Article  Google Scholar 

  • Lee JS, Choi WY, Kang IM (2012) Characteristics of gate-all-around hetero-gate-dielectric tunneling field-effect transistors. Jpn J Appl Phys 51:06FE03. doi:10.1143/JJAP.51.06FE03

    Article  Google Scholar 

  • Madan J, Gupta RS, Chaujar R (2014) Influence of heterogeneous gate dielectric on hetero-dielectric-DMG-GAATFET for improved tunneling current. Int J Adv Technol Eng Sci 2(1):41–47

    Google Scholar 

  • Madan J, Gupta RS, Chaujar R (2015a) Analytical drain current formulation for gate dielectric engineered dual material gate-gate all around-tunneling field effect transistor. Jpn J Appl Phys 54:094202. doi:10.7567/JJAP.54.094202

    Article  Google Scholar 

  • Madan J, Gupta RS, Chaujar R (2015b) Threshold voltage model of a hetero gate dielectric dual material gate GAA Tunnel FET. Advanced manufacturing, electronics and microsystems: techconnect Briefs 2015, pp 254–257. doi:10.13140/RG.2.1.3081.2003

  • Mallik A, Chattopadhyay A (2011) Drain-dependence of tunnel field-effect transistor characteristics: the role of the channel. IEEE Trans Electron Devices 58(12):4250–4257. doi:10.1109/TED.2011.2169416

    Article  Google Scholar 

  • Mookerjea S, Krishnan R, Datta S, Narayanan V (2009) Effective capacitance and drive current for tunnel FET (TFET) CV/I estimation. IEEE Trans Electron Devices 56(9):2092–2098. doi:10.1109/TED.2009.2026516

    Article  Google Scholar 

  • Nirschl T, Henzler S, Fischer J, Fulde M, Bargagli-Stoffi A, Sterkel M, Sedlmeir J, Weber C, Heinrich R, Schaper U, Einfeld J, Neubert R, Feldmann U, Stahrenberg K, Ruderer E, Georgakos G, Huber A, Kakoschke R, Hansch W, Schmitt-Landsiede D (2006) Scaling properties of the tunneling field effect transistor (TFET): device and circuit. Solid-State Electron 50:44–51. doi:10.1016/j.sse.2005.10.045

    Article  Google Scholar 

  • Noguchi M, Kim SH, Yokoyama M, Ichikawa O, Osada T, Hata M, Takenaka M, Takagi S (2015) High Ion/Ioff and low subthreshold slope planar-type InGaAs tunnel FETs with Zn-diffused source junctions. J Appl Phys 118:045712-1–045712-15. doi:10.1063/1.4927265

    Article  Google Scholar 

  • Shaker A, Ossaimee M, Zekry A, Abouelatta M (2015) Influence of gate overlap engineering on ambipolar and high frequency characteristics of tunnel-CNTFET. Superlattices Microstruct. doi:10.1016/j.spmi.2015.08.008

    Google Scholar 

  • Toh EH, Wang GH, Samudra G, Yeo YC (2007) Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization. Appl Phys Lett 90(26):263507–263510. doi:10.1063/1.2748366

    Article  Google Scholar 

  • Toh EH, Wang GH, Chan L, Sylvester D, Heng CH, Samudra GS, Yeo YC (2008) Device design and scalability of a double-gate tunneling field-effect transistor with silicon–germanium source. Jpn J Appl Phys 47(4S):2593–2597. doi:10.1143/JJAP.47.2593

    Article  Google Scholar 

  • Ying L, He Jin, Mansun C, Cai-Xia D, Yun Y, Wei Z, Wen W, Wan-Ling D, Wen-Ping W (2014) An analytical model for gate-all-around silicon nanowire tunneling field effect transistors. Chin Phys B 23(9):097102-1-6. doi:10.1088/1674-1056/23/9/097102

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank Microelectronics Research Lab, Department of Engineering Physics Delhi Technological University to carry out this work. One of the authors (Jaya Madan) would like to thank University Grants Commission, Govt. of India, for providing the necessary financial assistance during the course of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishu Chaujar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madan, J., Gupta, R.S. & Chaujar, R. Mathematical modeling insight of hetero gate dielectric-dual material gate-GAA-tunnel FET for VLSI/analog applications. Microsyst Technol 23, 4091–4098 (2017). https://doi.org/10.1007/s00542-016-2872-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-2872-9

Keywords

Navigation