Skip to main content
Log in

Resonant responses of three-layered shear-deformable microbeams

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper analyses the coupled resonant motion of three-layered shear-deformable microbeams. On the basis of the modified couple stress theory, while both the rotational and translational motions are considered, the size-dependent potential energy of the three-layered microsystems is developed based on a continuous variation of the displacement field through the thickness and constitutive relations. The kinetic energy is also developed in terms of the continuous displacement field. The works done by the external dynamic load and the viscous damping are obtained in terms of the displacement field and microsystem parameters. A dynamic balance is applied to the works of external force and damping of the three-layered microbeam and its kinetic energy and size-dependent potential energy. The nonlinear continuous models for the longitudinal, transverse, and rotational motions are then reduced via use of a weighted-residual method. Numerical simulations upon the reduced-order models for the translational and rotational motions are performed for the three-layered microbeam via use of Houbolt’s finite difference scheme together with Newton–Raphson method. The size-dependent nonlinear coupled resonant responses of the three-layered microsystem are obtained and presented in the form of frequency–responses and force-responses. The effects of three-layered microsystem parameters such as the thickness and material percentage of each layer on the microsystem motion are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abouelregal AE, Zenkour AM (2015) Generalized thermoelastic vibration of a microbeam with an axial force. Microsyst Technol 21:1427–1435

    Article  Google Scholar 

  • Asghari M, Ahmadian MT, Kahrobaiyan MH et al (2010) On the size-dependent behavior of functionally graded micro-beams. Mater Des 31:2324–2329

    Article  Google Scholar 

  • Banerjee J, Cheung C, Morishima R et al (2007) Free vibration of a three-layered sandwich beam using the dynamic stiffness method and experiment. Int J Solids Struct 44:7543–7563

    Article  MATH  Google Scholar 

  • Cao L, Fan S, Guo Z et al (2016) A method to simulate the vibrating characters of the resonator for resonant MEMS gyroscope. Microsyst Technol 22:2315–2327

    Article  Google Scholar 

  • Caruntu DI, Martinez I, Knecht MW (2013) Reduced order model analysis of frequency response of alternating current near half natural frequency electrostatically actuated MEMS cantilevers. J Comput Nonlinear Dyn 8:031011

    Article  Google Scholar 

  • Chen SH, Feng B (2011) Size effect in micro-scale cantilever beam bending. Acta Mech 219:291–307

    Article  MATH  Google Scholar 

  • De SK, Aluru NR (2004) Full-Lagrangian schemes for dynamic analysis of electrostatic MEMS. J Microelectromech Syst 13:737–758

    Article  Google Scholar 

  • Farokhi H, Ghayesh MH (2015a) Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory. Int J Mech Sci 90:133–144

    Article  Google Scholar 

  • Farokhi H, Ghayesh MH (2015b) Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams. Int J Eng Sci 91:12–33

    Article  MathSciNet  Google Scholar 

  • Farokhi H, Ghayesh MH (2016) Size-dependent parametric dynamics of imperfect microbeams. Int J Eng Sci 99:39–55

    Article  MathSciNet  Google Scholar 

  • Farokhi H, Ghayesh MH (2017a) Nonlinear thermo-mechanical behaviour of MEMS resonators. Microsyst Technol (in press)

  • Farokhi H, Ghayesh MH (2017b) Viscoelasticity effects on resonant response of a shear deformable extensible microbeam. Nonlinear Dyn 87:391–406

    Article  MATH  Google Scholar 

  • Farokhi H, Ghayesh MH (2017c) Nonlinear resonant response of imperfect extensible Timoshenko microbeams. Int J Mech Mater Design 13(1):43–55

    Article  Google Scholar 

  • Farokhi H, Ghayesh MH (2018a) Nonlinear mechanics of electrically actuated microplates. Int J Eng Sci 123:197–213

    Article  MathSciNet  Google Scholar 

  • Farokhi H, Ghayesh MH (2018b) Supercritical nonlinear parametric dynamics of Timoshenko microbeams. Commun Nonlinear Sci Numer Simul 59:592–605

    Article  MathSciNet  Google Scholar 

  • Farokhi H, Ghayesh MH, Amabili M (2013) Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory. Int J Eng Sci 68:11–23

    Article  MathSciNet  Google Scholar 

  • Farokhi H, Ghayesh MH, Hussain Sh (2016) Large-amplitude dynamical behaviour of microcantilevers. Int J Eng Sci 106:29–41

    Article  Google Scholar 

  • Farokhi H, Ghayesh MH, Gholipour A, Hussain Sh (2017) Motion characteristics of bilayered extensible Timoshenko microbeams. Int J Eng Sci 112:1–17

    Article  MathSciNet  Google Scholar 

  • Ghayesh MH, Farokhi H (2015a) Nonlinear dynamics of microplates. Int J Eng Sci 86:60–73

    Article  MathSciNet  Google Scholar 

  • Ghayesh MH, Farokhi H (2015b) Chaotic motion of a parametrically excited microbeam. Int J Eng Sci 96:34–45

    Article  MathSciNet  Google Scholar 

  • Ghayesh MH, Farokhi H, Amabili M (2013a) Coupled nonlinear size-dependent behaviour of microbeams. Appl Phys A 112:329–338

    Article  MATH  Google Scholar 

  • Ghayesh MH, Amabili M, Farokh H (2013b) Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams. Int J Eng Sci 71:1–14

    Article  MathSciNet  Google Scholar 

  • Ghayesh MH, Farokhi H, Amabili M (2013c) Nonlinear dynamics of a microscale beam based on the modified couple stress theory. Compos Part B Eng 50:318–324

    Article  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Amabili M (2013d) Nonlinear behaviour of electrically actuated MEMS resonators. Int J Eng Sci 71:137–155

    Article  Google Scholar 

  • Ghayesh MH, Amabili M, Farokhi H (2013e) Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int J Eng Sci 63:52–60

    Article  MathSciNet  Google Scholar 

  • Ghayesh MH, Farokhi H, Amabili M (2014) In-plane and out-of-plane motion characteristics of microbeams with modal interactions. Compos Part B Eng 60:423–439

    Article  Google Scholar 

  • Ghayesh MH, Farokhi H, Alici G (2016a) Size-dependent performance of microgyroscopes. Int J Eng Sci 100:99–111

    Article  MathSciNet  Google Scholar 

  • Ghayesh MH, Farokhi H, Hussain Sh (2016b) Viscoelastically coupled size-dependent dynamics of microbeams. Int J Eng Sci 109:243–255

    Article  MathSciNet  Google Scholar 

  • Ghayesh MH, Farokhi H, Gholipour A et al (2017a) Complex motion characteristics of three-layered Timoshenko microarches. Microsyst Technol 1–14 (in press)

  • Ghayesh MH, Farokhi H, Gholipour A (2017b) Vibration analysis of geometrically imperfect three-layered shear-deformable microbeams. Int J Mech Sci 122:370–383

    Article  Google Scholar 

  • Ghayesh MH, Farokhi H, Gholipour A (2017c) Oscillations of functionally graded microbeams. Int J Eng Sci 110:35–53

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Gholipour A, Tavallaeinejad M (2018) Nonlinear oscillations of functionally graded microplates. Int J Eng Sci 122:56–72

    Article  Google Scholar 

  • Gholipour A, Farokhi H, Ghayesh MH (2015) In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn 79:1771–1785

    Article  Google Scholar 

  • Haque MA, Saif MTA (2003) Strain gradient effect in nanoscale thin films. Acta Mater 51:3053–3061

    Article  Google Scholar 

  • Jafari H, Ghodsi A, Ghazavi MR et al (2016) Novel mass detection based on magnetic excitation in anti-resonance region. Microsyst Technol 23(5):1377–1383

    Article  Google Scholar 

  • Kheibari F, Beni YT (2017) Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model. Mater Des 114:572–583

    Article  Google Scholar 

  • Li A, Zhou S, Zhou S et al (2014) Size-dependent analysis of a three-layer microbeam including electromechanical coupling. Compos Struct 116:120–127

    Article  Google Scholar 

  • Li W, Xiao D, Wu X et al (2016) Enhanced temperature stability of sensitivity for MEMS gyroscope based on frequency mismatch control. Microsyst Technol. doi:https://doi.org/10.1007/s00542-016-3114-x

  • Rezazadeh G, Keyvani A, Jafarmadar S (2012) On a MEMS based dynamic remote temperature sensor using transverse vibration of a bi-layer micro-cantilever. Measurement 45:580–589

    Article  Google Scholar 

  • Ross DS, Cabal A, Trauernicht D et al (2005) Temperature-dependent vibrations of bilayer microbeams. Sens Actuators A 119:537–543

    Article  Google Scholar 

  • Tavakolian F, Farrokhabadi A, Mirzaei M (2015) Pull-in instability of double clamped microbeams under dispersion forces in the presence of thermal and residual stress effects using nonlocal elasticity theory. Microsyst Technol. doi:https://doi.org/10.1007/s00542-015-2785-z

  • Tian WC, Chen ZQ, Cao YR (2016) Analysis and test of a new MEMS micro-actuator. Microsyst Technol 22:943–952

    Article  Google Scholar 

  • Wang Y-G, Lin W-H, Feng Z-J et al (2012) Characterization of extensional multi-layer microbeams in pull-in phenomenon and vibrations. Int J Mech Sci 54:225–233

    Article  Google Scholar 

  • Xi Z, Cao Y, Yu P et al (2016) The simulation and visual test contact process of a MEMS inertial switch with flexible electrodes. Microsyst Technol 22:2035–2042

    Article  Google Scholar 

Download references

Acknowledgements

The financial support to this research by the start-up grant of the University of Adelaide is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mergen H. Ghayesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farokhi, H., Ghayesh, M.H., Gholipour , A. et al. Resonant responses of three-layered shear-deformable microbeams. Microsyst Technol 24, 2123–2136 (2018). https://doi.org/10.1007/s00542-018-3850-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3850-1

Navigation