Skip to main content
Log in

Backstepping control of novel arc-shaped SMA actuator

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, we present modeling and control of a novel arc-shaped Shape Memory Alloy (SMA) actuator. The arc-shaped SMA actuator is developed to provide rotational motion with compliance for biologically inspired robots. We modeled the dynamics of proposed SMA actuator. Based on the dynamics structure, we have developed proportional integral derivative (PID), backstepping and integral backstepping controllers. We have tested experimentally these controllers with input, output and input-output combined disturbances. Based on tracking error, peak error, settling time and control effort, integral backstepping controller is the most suited controller for the actuator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahn KK, Kha NB (2008) Modeling and control of shape memory alloy actuators using Preisach model, genetic algorithm and fuzzy logic. Mechatronics 18(3):141–152

    Article  Google Scholar 

  • Ali HFM, Khan AM, Baek H, Shin B, Kim Y (2021) Modeling and control of a finger-like mechanism using bending shape memory alloys. Microsyst Technol 27(6):2481–2492

    Article  Google Scholar 

  • Birman V (1997) Review of mechanics of shape memory alloy structures. Appl Mech Rev 50(11 part 1):629

    Article  Google Scholar 

  • Brinson LC (1993) One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct 4(2):229–242

    Article  Google Scholar 

  • Cisse C, Zaki W, Zineb TB (2016) A review of constitutive models and modeling techniques for shape memory alloys. Int J Plast 76:244–284

    Article  Google Scholar 

  • Doroudchi A, Zakerzadeh MR, Baghani M (2018) Developing a fast response SMA-actuated rotary actuator: modeling and experimental validation. Meccanica 53(1–2):305–317

    Article  Google Scholar 

  • Dutta SM, Ghorbel FH (2005) Differential hysteresis modeling of a shape memory alloy wire actuator. IEEE/ASME Trans Mechatron 10(2):189–197

    Article  Google Scholar 

  • Elahinia MH, Ahmadian M (2005) An enhanced SMA phenomenological model: I. The shortcomings of the existing models. Smart Mater Struct 14(6):1297

    Article  Google Scholar 

  • Elahinia MH, Seigler TM, Leo DJ, Ahmadian M (2004) Nonlinear stress-based control of a rotary SMA-actuated manipulator. J Intell Mater Syst Struct 15(6):495–508

    Article  Google Scholar 

  • Elahinia M, Koo J, Ahmadian M, Woolsey C (2005) Backstepping control of a shape memory alloy actuated robotic arm. J Vib Control 11(3):407–429

    Article  MATH  Google Scholar 

  • Freeman R, Kokotovic PV (2008) Robust nonlinear control design: state-space and Lyapunov techniques. Springer Science and Business Media, Berlin

    MATH  Google Scholar 

  • Frost M et al (2021) Thermomechanical model for NiTi-based shape memory alloys covering macroscopic localization of martensitic transformation. Int J Solids Struct 221:117–129

    Article  Google Scholar 

  • Ge SS, Tee KP, Vahhi IE, Tay FE (2006) Tracking and vibration control of flexible robots using shape memory alloys. IEEE/ASME Trans Mechatron 11(6):690–698

    Article  Google Scholar 

  • Guo Z, Pan Y, Wee LB, Yu H (2015) Design and control of a novel compliant differential shape memory alloy actuator. Sens Actuators A 225:71–80

    Article  Google Scholar 

  • Haruna A, Mohamed Z, Efe MÖ, Basri MAM (2017) Dual boundary conditional integral backstepping control of a twin rotor mimo system. J Franklin Inst 354(15):6831–6854

    Article  MathSciNet  MATH  Google Scholar 

  • Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Design 1980–2015(56):1078–1113

    Article  Google Scholar 

  • Khan MS, Ahmad I, Abideen FZU (2019) Output voltage regulation of FC-UC based hybrid electric vehicle using integral backstepping control. IEEE Access 7:65693–65702

    Article  Google Scholar 

  • Kim Y et al (2019) Bidirectional rotating actuators using shape memory alloy wires. Sens Actuators A 295:512–522

    Article  Google Scholar 

  • Kumagai A, Liu T-I, Hozian P (2006) Control of shape memory alloy actuators with a neuro-fuzzy feedforward model element. J Intell Manuf 17(1):45–56

    Article  Google Scholar 

  • Lagoudas DC et al (2006) Shape memory alloys, part II: modeling of polycrystals. Mech Mater 38(5–6):430–462

    Article  Google Scholar 

  • Lagoudas D, Hartl D, Chemisky Y, Machado L, Popov P (2012) Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. Int J Plast 32:155–183

    Article  Google Scholar 

  • Li J, Pi Y (2021) Fuzzy time delay algorithms for position control of soft robot actuated by shape memory alloy. Int J Control Autom Syst 19(6):2203–2212

    Article  Google Scholar 

  • Liang C, Rogers CA (1997) One-dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 8(4):285–302

    Article  Google Scholar 

  • Madill DR, Wang D (1998) Modeling and L2-stability of a shape memory alloy position control system. IEEE Trans Control Syst Technol 6(4):473–481

    Article  Google Scholar 

  • Mansour NA et al (2020a) Compliant closed-chain rolling robot using modular unidirectional sma actuators. Sens Actuators A Phys 310:112024

    Article  Google Scholar 

  • Mansour NA, Baek H, Jang T, Shin B, Kim Y (2020b) ANFIS-based system identification and control of a compliant shape memory alloy (SMA) rotating actuator. In: 2020 IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pp 783–788

  • Mirvakili SM, Hunter IW (2018) Artificial muscles: mechanisms, applications, and challenges. Adv Mater 30(6):1704407

    Article  Google Scholar 

  • Moghadam MH, Zakerzadeh MR, Ayati M (2019) Robust sliding mode position control of a fast response SMA-actuated rotary actuator using temperature and strain feedback. Sens Actuators A 292:158–168

    Article  Google Scholar 

  • Nakshatharan SS, Dhanalakshmi K, Ruth DJS (2015) Fuzzy based sliding surface for shape memory alloy wire actuated classical super-articulated control system. Appl Soft Comput J 32:580–589

    Article  Google Scholar 

  • Nespoli A, Besseghini S, Pittaccio S, Villa E, Viscuso S (2010) The high potential of shape memory alloys in developing miniature mechanical devices: a review on shape memory alloy mini-actuators. Sens Actuators A 158(1):149–160

    Article  Google Scholar 

  • Patoor E, Lagoudas DC, Entchev PB, Brinson LC, Gao X (2006) Shape memory alloys, part I: general properties and modeling of single crystals. Mech Mater 38(5–6):391–429

    Article  Google Scholar 

  • Poultney A, Gong P, Ashrafiuon H (2019) Integral backstepping control for trajectory and yaw motion tracking of quadrotors. Robotica 37(2):300–320

    Article  Google Scholar 

  • Prahlad H, Chopra I (2001) Comparative evaluation of shape memory alloy constitutive models with experimental data. J Intell Mater Syst Struct 12(6):383–395

    Article  Google Scholar 

  • Rezaee-Hajidehi M, Stupkiewicz S (2021) Micromorphic approach to phase-field modeling of multivariant martensitic transformation with rate-independent dissipation effects. Int J Solids Struct 222:111027

    Article  Google Scholar 

  • Silva AF et al (2018) Fuzzy control of a robotic finger actuated by shape memory alloy wires. J Dyn Syst Meas Contr 140(6):064502

    Article  Google Scholar 

  • Stupkiewicz S, Rezaee-Hajidehi M, Petryk H (2021) Multiscale analysis of the effect of interfacial energy on non-monotonic stress-strain response in shape memory alloys. Int J Solids Struct 221:77–91

    Article  Google Scholar 

  • Su T-H, Lu N-H, Chen C-H, Chen C-S (2020) Full-field stress and strain measurements revealing energy dissipation characteristics in martensitic band of Cu–Al–Mn shape memory alloy. Mater Today Commun 24:101321

    Article  Google Scholar 

  • Tanaka K (1986) A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res Mech 8(3):251–263

    Google Scholar 

  • Wang W, Wen C, Zhou J (2017) Adaptive backstepping control of uncertain systems with actuator failures, subsystem interactions, and nonsmooth nonlinearities. CRC Press, Boca Raton, pp 184–190

    Book  MATH  Google Scholar 

  • Williams EA, Shaw G, Elahinia M (2010) Control of an automotive shape memory alloy mirror actuator. Mechatronics 20(5):527–534

    Article  Google Scholar 

  • Yuan H, Fauroux J-C, Chapelle F, Balandraud X (2017) A review of rotary actuators based on shape memory alloys. J Intell Mater Syst Struct 28(14):1863–1885

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2017R1A2B4008056). Also, the first author is funded by the Korea Research Fellowship (KRF) program by the National Research Foundation (NRF) with KRF Grant (2019H1D3A1A01102998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngshik Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Backstepping control—proof

System dynamics of the arc-shaped SMA actuator is defined in Eqs. (17), (18) and (20). Based on this system dynamics, we can define

$$\begin{aligned}&e_1 = x_1 - x_{1_d} \end{aligned}$$
(36)
$$\begin{aligned}&\dot{e}_1 = x_2 - \dot{x}_{1_d} \end{aligned}$$
(37)

where \(x_{1_d}\) is the desired trajectory. To achieve convergence for \(e_1\), we can define Lyapunov function as follows

$$\begin{aligned}&V_1 = \frac{1}{2}e_1^2 \end{aligned}$$
(38)
$$\begin{aligned}&\dot{V}_1 =e_1\dot{e}_1 \end{aligned}$$
(39)
$$\begin{aligned}&= e_1[x_2- \dot{x}_{1_d}] \end{aligned}$$
(40)

To realize \(\dot{V}_1<0\), we choose virtual control as

$$\begin{aligned} x_{2_d} = \dot{x}_{1_d}-k_1e_1. \end{aligned}$$
(41)

To achieve \(x_2\rightarrow x_{2_d}\), we define new error

$$\begin{aligned}&e_2 = x_2 - x_{2_d} \end{aligned}$$
(42)

so,

$$\begin{aligned}&x_2 = e_2+x_{2_d}. \end{aligned}$$
(43)

Solving Eqs. (40), (41) and (43) simultaneously, we get

$$\begin{aligned}&\dot{V}_1 = e_1[e_2+x_{2_d}- \dot{x}_{1_d}] \end{aligned}$$
(44)
$$\begin{aligned}&\dot{V}_1 = e_1[e_2+\dot{x}_{1_d}-k_1e_1- \dot{x}_{1_d}] \end{aligned}$$
(45)
$$\begin{aligned}&\dot{V}_1 = -k_1e_1^2+e_1e_2. \end{aligned}$$
(46)

Next, we obtain

$$\begin{aligned}&\dot{e}_2 = \dot{x}_2 -\dot{x}_{2_d} = f_1(x)+g_1 x_3 - \dot{x}_{2_d} \end{aligned}$$
(47)

Now, to achieve convergence of \(e_2\), we define Lyapunov function as

$$\begin{aligned}&{V}_2 = V_1 + \frac{1}{2}e_2^2 \end{aligned}$$
(48)
$$\begin{aligned}&\dot{V}_2 = \dot{V}_1+e_2\dot{e}_2 \end{aligned}$$
(49)

Simplifying Eq. (49) using (46) and (47), we get

$$\begin{aligned}&\dot{V}_2 = -k_1e_1^2+e_1e_2+e_2[f_1(x)+g_1 x_3 - \dot{x}_{2_d} ] \end{aligned}$$
(50)

To realize \(\dot{V}_2 < 0\), we define virtual law as

$$\begin{aligned}&x_{3d} =\frac{1}{\hat{g}_1}[-\hat{f}_1(x)+\dot{x}_{2d}-e_1-k_2e_2] \end{aligned}$$
(51)

where \(\vert f_1(x)-\hat{f}_1(x) \vert = \vert \tilde{f}_1(x) \vert \le F_1\) and \(g_1 = [1+\Delta _1]\hat{g}_1\), \(\vert \Delta _1\vert \le D_1\), \(0<D_1<1\). Next, to achieve \(x_3\rightarrow x_{3_d}\), we define new error

$$\begin{aligned}&e_3 = x_3 - x_{3d} \end{aligned}$$
(52)

so,

$$\begin{aligned}&x_3 = e_3+x_{3d}. \end{aligned}$$
(53)

Using Eqs. (53) and (51), we can simplify (47)

$$\begin{aligned}&\dot{e}_2 = \dot{x}_2 -\dot{x}_{2_d} = f_1(x)+g_1 [e_3+x_{3d}] - \dot{x}_{2_d} \nonumber \\&= f_1(x)+g_1 \Big [e_3+\frac{1}{\hat{g}_1}[-\hat{f}_1(x)+\dot{x}_{2d}-e_1-k_2e_2]\Big ] - \dot{x}_{2_d} \end{aligned}$$
(54)

as \(g_1 = [1+\Delta _1]\hat{g}_1\), \(\vert \Delta _1\vert \le D_1\), \(0<D_1<1\) and \(\vert f_1(x)-\hat{f}_1(x) \vert = \vert \tilde{f}_1(x) \vert \le F_1\), therefore, we can write Eq. (54) as

$$\begin{aligned}&\dot{e}_2= f_1(x)+g_1 e_3+\Big [[1+\Delta _1][-\hat{f}_1(x)+\dot{x}_{2d}-e_1-k_2e_2]\Big ] - \dot{x}_{2_d} \nonumber \\&\dot{e}_2 \le f_1(x)+g_1 e_3+\Big [[1+D_1][-\hat{f}_1(x)+\dot{x}_{2d} \nonumber \\ & \quad-e_1-k_2e_2]\Big ] - \dot{x}_{2_d} \dot{e}_2 \le \tilde{f}_1(x)-D_1\hat{f}_1+g_1 e_3+D_1\dot{x}_{2d}+\Big [[1+D_1][-e_1-k_2e_2]\Big ] \end{aligned}$$
(55)
$$\begin{aligned}&\dot{e}_2 \le F_1-D_1\hat{f}_1+g_1 e_3+D_1\dot{x}_{2d}+\Big [[1+D_1] \nonumber \\ & \quad [-e_1-k_2e_2]\Big ] \end{aligned}$$
(56)

Using Eq. (56), we can simplify (50)

$$\begin{aligned}&\dot{V}_2 = -k_1e_1^2+e_1e_2+e_2\bigg [F_1-D_1\hat{f}_1+g_1 e_3+D_1\dot{x}_{2d} \nonumber \\ &\quad +\Big [[1+D_1][-e_1-k_2e_2]\Big ]\bigg ]\nonumber \\&\quad \dot{V}_2 = -k_1e_1^2 - [1+D_1]k_2e_2^2-D_1e_1e_2 \nonumber \\ &\quad +e_2\bigg [F_1-D_1\hat{f}_1+g_1 e_3+D_1\dot{x}_{2d}\bigg ] \nonumber \\&\quad \dot{V}_2 = -k_1e_1^2 - [1+D_1]k_2e_2^2-D_1e_1e_2 \nonumber \\ &\quad +e_2\big [g_1 e_3 + V_{2_e}\big ] \end{aligned}$$
(57)

where

$$\begin{aligned} V_{2_e} = \bigg [F_1-D_1\hat{f}_1+D_1\dot{x}_{2d}\bigg ]. \end{aligned}$$
(58)

Next, to achieve convergence of \(e_3\), we define Lyapunov function as

$$\begin{aligned}&V_3 = V_2+\frac{1}{2}e_3^2 \end{aligned}$$
(59)
$$\begin{aligned}&\dot{V}_3 = \dot{V}_2 + e_3\dot{e}_3 \end{aligned}$$
(60)

where

$$\begin{aligned}&\dot{e}_3 = \dot{x}_3 - \dot{x}_{3d} \end{aligned}$$
(61)
$$\begin{aligned}&\dot{e}_3 = f_2(x)+g_2(x)u-\dot{x}_{3d} \end{aligned}$$
(62)

To achieve \(\dot{V}_3 < 0\), we define control law as

$$\begin{aligned}&u = \frac{1}{\hat{g}_2(x)}[-\hat{f}_2(x)+\dot{x}_{3d}-k_3e_3-\hat{g}_1e_2] \end{aligned}$$
(63)

Using Eq. (63), we can simplify (62) as

$$\begin{aligned}&\dot{e}_3 = f_2(x)+g_2(x)\Big [\frac{1}{\hat{g}_2(x)}[-\hat{f}_2(x)+\dot{x}_{3d}-k_3e_3 \nonumber \\ &\quad -\hat{g}_1e_2] \Big ]-\dot{x}_{3d} \end{aligned}$$
(64)

As \(g_2 = [1+\Delta _2]\hat{g}_2\), \(\vert \Delta _2\vert \le D_2\), \(0<D_2<1\) and \(\vert f_2(x)-\hat{f}_2(x) \vert = \vert \tilde{f}_2(x) \vert \le F_2\), therefore, we can write Eq. (64)

$$\begin{aligned} \dot{e}_3&= f_2(x)+[1+\Delta _2][-\hat{f}_2(x)+\dot{x}_{3d}-k_3e_3-\hat{g}_1e_2] -\dot{x}_{3d} \nonumber \\ \dot{e}_3&\le f_2(x)+[1+D_2][-\hat{f}_2(x)+\dot{x}_{3d}-k_3e_3-\hat{g}_1e_2] -\dot{x}_{3d} \nonumber \\ \dot{e}_3&\le \tilde{f}_2(x)-D_2\hat{f}_2+D_2 \dot{x}_{3d} +[1+D_2][-k_3e_3-\hat{g}_1e_2] \end{aligned}$$
(65)
$$\begin{aligned} \dot{e}_3&\le F_2-D_2\hat{f}_2+D_2 \dot{x}_{3d} +[1+D_2][-k_3e_3-\hat{g}_1e_2] \end{aligned}$$
(66)

Now, using Eq. (66), we can simplify (60) as

$$\begin{aligned} \dot{V}_3 \le&-k_1e_1^2-[1+D_2]k_2e_2^2+e_2\big [g_1e_3+V_{2_e}\big ] \nonumber \\&+ e_3\Big [ F_2-D_2\hat{f}_2+D_2 \dot{x}_{3d} +[1+D_2][-k_3e_3-\hat{g}_1e_2]\Big ] \nonumber \\ \dot{V}_3 \le&-k_1e_1^2-[1+D_2]k_2e_2^2-[1+D_2]k_3e_3^2\nonumber \\&+e_2\big [g_1e_3+V_{2_e}\big ] + e_3\Big [-\hat{g}_1e_2 +V_{3_e}\Big ] \end{aligned}$$
(67)

where

$$\begin{aligned} V_{3_e} = F_2-D_2\hat{f}_2+D_2 \dot{x}_{3d} -D_2\hat{g}_1e_2 \end{aligned}$$
(68)

As, \(g_1 \le (1+D_1)\hat{g}_1\), we can write Eq. (67) as

$$\begin{aligned} \dot{V}_3 \le&-k_1e_1^2-[1+D_2]k_2e_2^2-[1+D_2]k_3e_3^2 \nonumber \\ & \quad +(1+D_1)\hat{g}_1e_2e_3 - \hat{g}_1e_2e_3 + V_{t_e} \end{aligned}$$
(69)

where

$$\begin{aligned} V_{t_e} = e_2 V_{2_e} + e_3V_{3_e}. \end{aligned}$$
(70)

Therefore, we can write Eq. (69) as

$$\begin{aligned} \dot{V}_3 \le -k_1e_1^2-[1+D_2]k_2e_2^2-[1+D_2]k_3e_3^2 \nonumber \\ \quad +D_1\hat{g}_1e_2e_3+ V_{t_e} \end{aligned}$$
(71)

So, to achieve \(\dot{V}_3 < 0\), we have to

$$\begin{aligned} \big [D_1\hat{g}_1e_2e_3+ V_{t_e}\big ] < \big [k_1e_1^2+[1+D_2]k_2e_2^2 \nonumber \\ &\quad +[1+D_2]k_3e_3^2 \big ] \end{aligned}$$
(72)

Therefore, if we shall choose \(k_1, k_2\) and \(k_3\) greater than zero and large enough to satisfy Eq. (72), we shall always have \(\dot{V}_3 < 0\).

Appendix B Integral backstepping control—proof

Just like backstepping controller, procedure to derive integral backstepping controller is also same. It starts with system dynamics of the arc-shaped SMA actuator as defined in Eqs. (17), (18) and (20). Based on the dynamics, we define

$$\begin{aligned}&e_1 = x_1 - x_{1_d} \end{aligned}$$
(73)
$$\begin{aligned}&\dot{e}_1 = x_2 - \dot{x}_{1_d} \end{aligned}$$
(74)

where \(x_{1_d}\) is the desired trajectory. To achieve convergence for \(e_1\), we can define Lyapunov function as follows

$$\begin{aligned}&V_1 = \frac{1}{2}e_1^2 \end{aligned}$$
(75)
$$\begin{aligned}&\dot{V}_1 =e_1\dot{e}_1 \end{aligned}$$
(76)
$$\begin{aligned}&= e_1[x_2- \dot{x}_{1_d}] \end{aligned}$$
(77)

To realize \(\dot{V}_1<0\), we choose virtual control as

$$\begin{aligned} x_{2_d} = \dot{x}_{1_d}-k_1e_1. \end{aligned}$$
(78)

To achieve \(x_2\rightarrow x_{2_d}\), we define new error

$$\begin{aligned}&e_2 = x_2 - x_{2_d} \end{aligned}$$
(79)

so,

$$\begin{aligned}&x_2 = e_2+x_{2_d}. \end{aligned}$$
(80)

Solving Eqs. (77), (78) and (80) simultaneously, we get

$$\begin{aligned}&\dot{V}_1 = e_1[e_2+x_{2_d}- \dot{x}_{1_d}]\end{aligned}$$
(81)
$$\begin{aligned}&\dot{V}_1 = e_1[e_2+\dot{x}_{1_d}-k_1e_1- \dot{x}_{1_d}]\end{aligned}$$
(82)
$$\begin{aligned}&\dot{V}_1 = -k_1e_1^2+e_1e_2. \end{aligned}$$
(83)

Next, we obtain

$$\begin{aligned}&\dot{e}_2 = \dot{x}_2 -\dot{x}_{2_d} = f_1(x)+g_1 x_3 - \dot{x}_{2_d} \end{aligned}$$
(84)

Now, to achieve convergence of \(e_2\), we define Lyapunov function as

$$\begin{aligned}&{V}_2 = V_1 + \frac{1}{2}e_2^2 \end{aligned}$$
(85)
$$\begin{aligned}&\dot{V}_2 = \dot{V}_1+e_2\dot{e}_2 \end{aligned}$$
(86)

Simplifying Eq. (86) using (83) and (84), we get

$$\begin{aligned}&\dot{V}_2 = -k_1e_1^2+e_1e_2+e_2[f_1(x)+g_1 x_3 - \dot{x}_{2_d} ] \end{aligned}$$
(87)

To realize \(\dot{V}_2 < 0\), we define virtual law as

$$\begin{aligned}&x_{3d} =\frac{1}{\hat{g}_1}[-\hat{f}_1(x)+\dot{x}_{2d}-k_i\int e_1\;\text {d}t-e_1-k_2e_2]. \end{aligned}$$
(88)

This Eq. (88) is the brings major difference between backstepping controller and integral backstepping controller. We can compare Eq. (51) for backstepping controller with Eq. (88). Next, we define error

$$\begin{aligned}&e_3 = x_3 - x_{3d} - k_i \int e_1\;\text {d}t \end{aligned}$$
(89)
$$\begin{aligned}&x_3 = e_3+x_{3d}+k_i \int e_1\;\text {d}t \end{aligned}$$
(90)
$$\begin{aligned}&\dot{e}_2 = \dot{x}_2 -\dot{x}_{2_d} = f_1(x)+g_1 [e_3+x_{3d}+k_i \int e_1\;\text {d}t] - \dot{x}_{2_d} \end{aligned}$$
(91)
$$\begin{aligned}&\dot{e}_2 = f_1(x)+g_1 \Big [e_3+\frac{1}{\hat{g}_1}[-\hat{f}_1(x)+\dot{x}_{2d}-k_i\int e_1\;\text {d}t \nonumber \\ & \quad -e_1-k_2e_2] +k_i \int e_1\;\text {d}t\Big ] - \dot{x}_{2_d} \end{aligned}$$
(92)

as \(g_1 = [1+\Delta _1]\hat{g}_1\), \(\vert \Delta _1\vert \le D_1\), \(0<D_1<1\) and \(\vert f_1(x)-\hat{f}_1(x) \vert = \vert \tilde{f}_1(x) \vert \le F_1\), therefore, we can write Eq. (92) as

$$\begin{aligned}&\dot{e}_2 = f_1(x)+g_1 e_3+\Big [[1+\Delta _1][-\hat{f}_1(x)+\dot{x}_{2d}-k_i \nonumber \\ & \quad \int e_1\;\text {d}t-e_1-k_2e_2] +k_i \int e_1\;\text {d}t\Big ] - \dot{x}_{2_d} \end{aligned}$$
(93)
$$\begin{aligned}&\dot{e}_2 \le f_1(x)+g_1 e_3+\Big [[1+D_1][-\hat{f}_1(x)+\dot{x}_{2d}-k_i \nonumber \\ & \quad \int e_1\;\text {d}t-e_1-k_2e_2] +k_i \int e_1\;\text {d}t\Big ] - \dot{x}_{2_d} \end{aligned}$$
(94)
$$\begin{aligned}&\dot{e}_2 \le \tilde{f}_1(x)-D_1\hat{f}_1+g_1 e_3+D_1\dot{x}_{2d}-D_1k_i \int e_1\;\text {d}t \nonumber \\ & \quad +\Big [[1+D_1][-e_1-k_2e_2]\Big ] \dot{e}_2 \le F_1-D_1\hat{f}_1+g_1 e_3+D_1\dot{x}_{2d}-D_1k_i \int e_1\;\text {d}t +\Big [[1+D_1][-e_1-k_2e_2]\Big ] \end{aligned}$$
(95)

Using Eq. (95), we can simplify (87) as

$$\begin{aligned}&\dot{V}_2 \le -k_1e_1^2+e_1e_2\nonumber \\&\quad +e_2\bigg [F_1-D_1\hat{f}_1+g_1 e_3+D_1\dot{x}_{2d}-D_1k_i \int e_1\;\text {d}t \nonumber \\ & \quad +\Big [[1+D_1][-e_1-k_2e_2]\Big ]\bigg ] \end{aligned}$$
(96)
$$\begin{aligned}&\dot{V}_2 = -k_1e_1^2 - [1+D_1]k_2e_2^2-D_1e_1e_2 +e_2\bigg [g_1 e_3+V_{2_e}\bigg ] \end{aligned}$$
(97)

where

$$\begin{aligned} V_{2_e} = F_1-D_1\hat{f}_1+D_1\dot{x}_{2d}-D_1k_i \int e_1\;\text {d}t. \end{aligned}$$
(98)

Next, to achieve convergence of \(e_3\), we define Lyapunov function as

$$\begin{aligned}&V_3 = V_2+\frac{1}{2}e_3^2 \end{aligned}$$
(99)
$$\begin{aligned}&\dot{V}_3 = \dot{V}_2 + e_3\dot{e}_3. \end{aligned}$$
(100)

Here,

$$\begin{aligned}&\dot{e}_3 = \dot{x}_3 - \dot{x}_{3d} - k_i e_1 \end{aligned}$$
(101)
$$\begin{aligned}&\dot{e}_3 = f_2(x)+g_2(x)u-\dot{x}_{3d} - k_i e_1 \end{aligned}$$
(102)

Then, we define

$$\begin{aligned}&u = \frac{1}{\hat{g}_2(x)}[-\hat{f}_2(x)+\dot{x}_{3d}+k_ie_1-k_3e_3-\hat{g}_1e_2] \end{aligned}$$
(103)

Using Eq. (103), we can simplify (102) as

$$\begin{aligned}&\dot{e}_3 = f_2(x)+g_2(x)\bigg [\frac{1}{\hat{g}_2(x)}[-\hat{f}_2(x)+\dot{x}_{3d}+k_ie_1 \nonumber \\ & \quad -k_3e_3-\hat{g}_1e_2] \bigg ]-\dot{x}_{3d} - k_i e_1 \end{aligned}$$
(104)

as \(g_2 = [1+\Delta _2]\hat{g}_2\), \(\vert \Delta _2\vert \le D_2\), \(0<D_2<1\) and \(\vert f_2(x)-\hat{f}_2(x) \vert = \vert \tilde{f}_2(x) \vert \le F_2\), therefore, we can write Eq. (104) as

$$\begin{aligned}&\dot{e}_3 \le \bigg [F_2-D_2\hat{f}_2(x)+[1+D_2]\Big [\dot{x}_{3d}+k_1e_1 \nonumber \\ & \quad -k_3e_3-\hat{g}_1e_2\Big ]-\dot{x}_{3d} -k_ie_1\bigg ] \end{aligned}$$
(105)
$$\begin{aligned}&\dot{e}_3 \le \bigg [F_2-D_2\hat{f}_2(x)+D_2\dot{x}_{3d}+D_2k_1e_1+ [1+D_2] \nonumber \\ & \quad \Big [-k_3e_3-\hat{g}_1e_2\Big ]\bigg ] \end{aligned}$$
(106)

Using Eq. (105), we can simplify (100) as

$$\begin{aligned}&\dot{V}_3 \le -k_1e_1^2-[1+D_1]k_2e_2^2+e_2\Big [g_1e_3+V_{2_e}\Big ] \nonumber \\&\quad + e_3\bigg [F_2-D_2\hat{f}_2(x)+[1+D_2]\Big [\dot{x}_{3d}+k_1e_1-k_3e_3-\hat{g}_1e_2\Big ] \nonumber \\ & \quad -\dot{x}_{3d} -k_ie_1\bigg ] \end{aligned}$$
(107)
$$\begin{aligned}&\dot{V}_3 \le -k_1e_1^2-[1+D_2]k_2e_2^2-[1+D_2]k_3e_3^2 +e_2\big [g_1e_3+V_{2_e}\big ] \nonumber \\ & \quad + e_3\Big [-\hat{g}_1e_2 +V_{3_e}\Big ] \end{aligned}$$
(108)

where

$$\begin{aligned} V_{3_e} = F_2-D_2\hat{f}_2+D_2 \dot{x}_{3d} -D_2\hat{g}_1e_2 \end{aligned}$$
(109)

SAs, \(g_1 \le (1+D_1)\hat{g}_1\), we can write Eq. (108) as

$$\begin{aligned} \dot{V}_3 \le&-k_1e_1^2-[1+D_2]k_2e_2^2-[1+D_2]k_3e_3^2 \nonumber \\ & \quad +(1+D_1)\hat{g}_1e_2e_3 - \hat{g}_1e_2e_3 + V_{t_e} \end{aligned}$$
(110)

where

$$\begin{aligned} V_{t_e} = e_2 V_{2_e} + e_3V_{3_e}. \end{aligned}$$
(111)

Therefore, we can write Eq. (110) as

$$\begin{aligned} \dot{V}_3 \le -k_1e_1^2-[1+D_2]k_2e_2^2-[1+D_2]k_3e_3^2 \nonumber \\ \quad +D_1\hat{g}_1e_2e_3+ V_{t_e} \end{aligned}$$
(112)

So, to achieve \(\dot{V}_3 < 0\), we have to

$$\begin{aligned} \big [D_1\hat{g}_1e_2e_3+ V_{t_e}\big ] < \big [k_1e_1^2+[1+D_2]k_2e_2^2 \nonumber \\ \quad +[1+D_2]k_3e_3^2 \big ] \end{aligned}$$
(113)

Therefore, if we shall choose \(k_1, k_2\) and \(k_3\) greater than zero and large enough to satisfy Eq. (113), we shall always have \(\dot{V}_3 < 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.M., Shin, B., Usman, M. et al. Backstepping control of novel arc-shaped SMA actuator. Microsyst Technol 28, 2191–2202 (2022). https://doi.org/10.1007/s00542-022-05250-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-022-05250-7

Navigation