Skip to main content

Advertisement

Log in

Consequences of inoculation with native arbuscular mycorrhizal fungi for root colonization and survival of Artemisia tridentata ssp. wyomingensis seedlings after transplanting

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

In arid environments, the propagule density of arbuscular mycorrhizal fungi (AMF) may limit the extent of the plant–AMF symbiosis. Inoculation of seedlings with AMF could alleviate this problem, but the success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These phenomena were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) seedlings inoculated with native AMF. Seedlings were first grown in a greenhouse in soil without AMF (non-inoculated seedlings) or with AMF (inoculated seedlings). In spring and fall, 3-month-old seedlings were transplanted outdoors to 24-L pots containing soil from a sagebrush habitat (spring and fall mesocosm experiments) or to a recently burned sagebrush habitat (spring and fall field experiments). Five or 8 months after transplanting, colonization was about twofold higher in inoculated than non-inoculated seedlings, except for the spring field experiment. In the mesocosm experiments, inoculation increased survival during the summer by 24 % (p = 0.011). In the field experiments, increased AMF colonization was associated with increases in survival during cold and dry periods; 1 year after transplanting, survival of inoculated seedlings was 27 % higher than that of non-inoculated ones (p < 0.001). To investigate possible mechanisms by which AMF increased survival, we analyzed water use efficiency (WUE) based on foliar 13C/12C isotope ratios (δ 13C). A positive correlation between AMF colonization and δ 13C values was observed in the spring mesocosm experiment. In contrast, inoculation did not affect the δ 13C values of fall transplanted seedlings that were collected the subsequent spring. The effectiveness of AMF inoculation on enhancing colonization and reducing seedling mortality varied among the different experiments, but average effects were estimated by meta-analyses. Several months after transplanting, average AMF colonization was in proportion 84 % higher in inoculated than non-inoculated seedlings (p = 0.0042), while the average risk of seedling mortality was 42 % lower in inoculated than non-inoculated seedlings (p = 0.047). These results indicate that inoculation can increase AMF colonization over the background levels occurring in the soil, leading to higher rates of survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbaspour H, Saeidi-Sar S, Afshari H, Abdel-Wahhab MA (2012) Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. J Plant Physiol 169:704–709. doi:10.1016/j.jplph.2012.01.014

    Article  CAS  PubMed  Google Scholar 

  • Al-Agely A, Reeves F (1995) Inland sand dune mycorrhizae: effects of soil depth, moisture, and pH on colonization of Oryzopsis hymenoides. Mycologia 87:54–60

    Article  Google Scholar 

  • Aldridge CL, Boyce MS (2007) Linking occurrence and fitness to persistence: habitat-based approach for endangered Greater Sage-Grouse. Ecol Appl 17:508–526. doi:10.1890/05-1871

    Article  PubMed  Google Scholar 

  • Allen EB, Allen ME, Egerton-Warburton L, Corkidi L, Gomez-Pompa A (2003) Impacts of early- and late-seral mycorrhizae during restoration in seasonal tropical forest, Mexico. Ecol Appl 13:1701–1717. doi:10.1890/02-5309

    Article  Google Scholar 

  • Allen MF (1983) Formation of vesicular arbuscular mycorrhizae in Atriplex gardneri chenopodiaceae seasonal response in a cold desert. Mycologia 75:773–776

    Article  Google Scholar 

  • Allen MF (2001) Modeling arbuscular mycorrhizal infection: is % infection an appropriate variable? Mycorrhiza 10:255–258. doi:10.1007/s005720000081

    Article  Google Scholar 

  • Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297. doi:10.2136/vzj2006.0068

    Article  Google Scholar 

  • Allen MF, Allen EB, Gomez-Pompa A (2005) Effects of mycorrhizae and nontarget organisms on restoration of a seasonal tropical forest in Quintana Roo, Mexico: factors limiting tree establishment. Restor Ecol 13:325–333. doi:10.1111/j.1526-100X.2005.00041.x

    Article  Google Scholar 

  • Anderson JE, Inouye RS (2001) Landscape-scale changes in plant species abundance and biodiversity of a sagebrush steppe over 45 years. Ecol Monogr 71:531–556

    Article  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42. doi:10.1007/s005720100097

    Article  Google Scholar 

  • Augé RM, Moore JL, Cho KH, Stutz JC, Sylvia DM, Al-Agely A, Saxton AM (2003) Relating foliar dehydration tolerance of mycorrhizal Phaseolus vulgaris to soil and root colonization by hyphae. J Plant Physiol 160:1147–1156. doi:10.1078/0176-1617-01154

    Article  PubMed  Google Scholar 

  • Augé RM, Toler HD, Saxton AM (2014) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 1–12.

  • Baek K-H, Skinner DZ (2012) Production of reactive oxygen species by freezing stress and the protective roles of antioxidant enzymes in plants. J Agric Chem Environ 01:34–40. doi:10.4236/jacen.2012.11006

    Google Scholar 

  • Bárzana G, Aroca R, Antonio Paz J, Chaumont F, Martinez-Ballesta MC, Carvajal M, Ruiz-Lozano JM (2012) Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot 109:1009–1017. doi:10.1093/aob/mcs007

    Article  PubMed  PubMed Central  Google Scholar 

  • Bethlenfalvay GJ, Brown MS, Ames RN, Thomas RS (1988) Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiol Plant 72:565–571. doi:10.1111/j.1399-3054.1988.tb09166.x

    Article  CAS  Google Scholar 

  • Boyd CS, Obradovich M (2014) Is pile seeding Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis) an effective alternative to broadcast seeding? Rangel Ecol Manag 67:292–297

    Article  Google Scholar 

  • Brooks ML, D’Antonio CM, Richardson DM, Grace JB, Keeley JE, Ditomaso JM, Hobbs R, Pellant M, Pyke D (2004) Effects of invasive alien plants on fire regimes. Bioscience 54:677–688. doi:10.1641/0006-3568(2004)054[0677:eoiapo]2.0.co;2

    Article  Google Scholar 

  • Carter KA, Smith JF, White MM, Serpe MD (2014) Assessing the diversity of arbuscular mycorrhizal fungi in semiarid shrublands dominated by Artemisia tridentata ssp. wyomingensis. Mycorrhiza 24:301–314. doi:10.1007/s00572-013-0537-4

    Article  PubMed  Google Scholar 

  • Charley J, West N (1977) Micro-patterns of nitrogen mineralization activity in soils of some shrub-dominated semi-desert ecosystems of Utah. Soil Biol Biochem 9:357–365

    Article  CAS  Google Scholar 

  • Cox RD, Anderson VJ (2004) Increasing native diversity of cheatgrass-dominated rangeland through assisted succession. Rangel Ecol Manag 57:203–210

    Article  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalzell CR (2004) Post-fire establishment of vegetation communities following reseeding on southern Idaho’s Snake River Plain. MS Thesis (Boise State University)

  • D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass fire cycle, and global change. Annu Rev Ecol Syst 23:63–87. doi:10.1146/annurev.ecolsys.23.1.63

    Article  Google Scholar 

  • Davies KW, Bates JD, Miller RF (2007) The influence of Artemsia tridentata ssp wyomingensis on microsite and herbaceous vegetation heterogeneity. J Arid Environ 69:441–457. doi:10.1016/j.jaridenv.2006.10.017

    Article  Google Scholar 

  • Donovan LA, Ehleringer JR (1994) Carbon isotope discrimination, water-use efficiency, growth, and mortality in a natural shrub population. Oecologia 100:347–354. doi:10.1007/BF00316964

    Article  Google Scholar 

  • Doubkova P, Vlasakova E, Sudova R (2013) Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil 370:149–161. doi:10.1007/s11104-013-1610-7

    Article  CAS  Google Scholar 

  • Gurr JE, Wicklow-Howard M (1994) VA mycorrhizal status of burned and unburned sagebrush habitat. Proc-Ecol Manag Annu Rangel, Boise, pp 132–135

    Google Scholar 

  • Hacke UG, Sperry JS, Pittermann J (2000) Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic Appl Ecol 1:31–41. doi:10.1078/1439-1791-00006

    Article  Google Scholar 

  • Hardie K, Leyton L (1981) The influence of vesicular‐arbuscular mycorrhiza on growth and water relations of red clover. New Phytol 89:599–608

    Article  Google Scholar 

  • Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156

    Article  Google Scholar 

  • Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou JQ, Romo JT (1998) Cold-hardiness of silver sagebrush seedlings. J Range Manag 51:704–708. doi:10.2307/4003616

    Article  Google Scholar 

  • Hunter JE, Schmidt FL (2000) Fixed effects vs. random effects meta-analysis models: implications for cumulative research knowledge. Int J Sel Assess 8:275–292. doi:10.1111/1468-2389.00156

    Article  Google Scholar 

  • Jakobsen T, Nielsen E (1983) Vesicular‐arbuscular mycorrhiza in field‐grown crops. New Phytol 93:401–413

    Article  Google Scholar 

  • Jayne B, Quigley M (2014) Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza 24:109–119. doi:10.1007/s00572-013-0515-x

    Article  PubMed  Google Scholar 

  • Johnson NC, Graham JH (2013) The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363:411–419. doi:10.1007/s11104-012-1406-1

    Article  CAS  Google Scholar 

  • Jones MD, Smith SE (2004) Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can J Bot 82:1089–1109. doi:10.1139/b04-110

    Article  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334. doi:10.1663/0006-8101(2002)068[0270:aaarow]2.0.co;2

    Article  Google Scholar 

  • Latef AAHA, He C (2011) Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol Plant 33:1217–1225. doi:10.1007/s11738-010-0650-3

    Article  Google Scholar 

  • Lambrecht SC, Shattuck AK, Loik ME (2007) Combined drought and episodic freezing effects on seedlings of low‐and high‐elevation subspecies of sagebrush (Artemisia tridentata). Physiol Plant 130:207–217

    Article  CAS  Google Scholar 

  • Larrucea ES, Brussard PF (2008) Habitat selection and current distribution of the pygmy rabbit in Nevada and California, USA. J Mammal 89:691–699. doi:10.1644/07-mamm-a-199r.1

    Article  Google Scholar 

  • Lim C-C, Krebs SL, Arora R (2014) Cold hardiness increases with age in juvenile Rhododendron populations. Front Plant Sci 5:1–7. doi:10.3389/fpls.2014.00542

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Miller G, Suzuki N, Ciftci‐Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mummey DL, Antunes PM, Rillig MC (2009) Arbuscular mycorrhizal fungi pre-inoculant identity determines community composition in roots. Soil Biol Biochem 41:1173–1179. doi:10.1016/j.soilbio.2009.02.027

    Article  CAS  Google Scholar 

  • Mummey DL, Rillig MC (2006) The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288:81–90. doi:10.1007/s11104-006-9091-6

    Article  CAS  Google Scholar 

  • Mummey DL, Rillig MC (2007) Evaluation of LSU rRNA-gene PCR primers for analysis of arbuscular mycorrhizal fungal communities via terminal restriction fragment length polymorphism analysis. J Microbiol Methods 70:200–204. doi:10.1016/j.mimet.2007.04.002

    Article  CAS  PubMed  Google Scholar 

  • Navarro Garcia A, Del Pilar Banon Arias S, Morte A, Jesus Sanchez-Blanco M (2011) Effects of nursery preconditioning through mycorrhizal inoculation and drought in Arbutus unedo L. plants. Mycorrhiza 21:53–64. doi:10.1007/s00572-010-0310-x

    Article  PubMed  Google Scholar 

  • Noss RF, LaRoe ET, Scott JM (1995) Endangered ecosystems of the United States: a preliminary assessment of loss and degradation. US Department of the Interior. National Biological Service Washington, DC, USA

    Google Scholar 

  • O’Dea ME (2007) Influence of mycotrophy on native and introduced grass regeneration in a semiarid grassland following burning. Restor Ecol 15:149–155. doi:10.1111/j.1526-100X.2006.00199.x

    Article  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Ris E, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283

    Article  PubMed  Google Scholar 

  • Ouahmane L, Hafidi M, Thioulouse J, Ducousso M, Kisa M, Prin Y, Galiana A, Boumezzough A, Duponnois R (2007) Improvement of Cupressus atlantica Gaussen growth by inoculation with native arbuscular mycorrhizal fungi. J Appl Microbiol 103:683–690. doi:10.1111/j.1365-2672.2007.03296.x

    Article  CAS  PubMed  Google Scholar 

  • Paluch EC, Thomsen MA, Volk TJ (2013) Effects of resident soil fungi and land use history outweigh those of commercial mycorrhizal inocula: testing a restoration strategy in unsterilized soil. Restor Ecol 21:380–389. doi:10.1111/j.1526-100X.2012.00894.x

    Article  Google Scholar 

  • Pattinson G, Hammill K, Sutton B, McGee P (1999) Simulated fire reduces the density of arbuscular mycorrhizal fungi at the soil surface. Mycol Res 103:491–496

    Article  Google Scholar 

  • Pedranzani H, Rodríguez-Rivera M, Gutiérrez M, Porcel R, Hause B, Ruiz-Lozano JM (2015) Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza 26:1–12. doi:10.1007/s00572-015-0653-4

    Google Scholar 

  • Perryman BL, Maier AM, Hild AL, Olson RA (2001) Demographic characteristics of 3 Artemisia tridentata Nutt. subspecies. J Range Manag 54:166–170. doi:10.2307/4003178

    Article  Google Scholar 

  • Querejeta JI, Barea JM, Allen MF, Caravaca F, Roldán A (2003) Differential response of δ13C and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. Oecologia 135:510–515. doi:10.1007/s00442-003-1209-4

    Article  PubMed  Google Scholar 

  • Querejeta JI, Allen MF, Caravaca F, Roldan A (2006) Differential modulation of host plant delta C-13 and delta O-18 by native and nonnative arbuscular mycorrhizal fungi in a semiarid environment. New Phytol 169:379–387

    Article  CAS  PubMed  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Prieto I, Vargas R, Allen MF (2012) Changes in soil hyphal abundance and viability can alter the patterns of hydraulic redistribution by plant roots. Plant Soil 355:63–73. doi:10.1007/s11104-011-1080-8

    Article  CAS  Google Scholar 

  • R-Development-Core-Team (2013) R: a language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria

  • Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498. doi:10.1128/aem.67.2.495-498.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson BA, Kitchen SG, Pendleton RL, Pendleton BK, Germino MJ, Rehfeldt GE, Meyer SE (2014) Adaptive responses reveal contemporary and future ecotypes in a desert shrub. Ecol Appl 24:413–427

    Article  PubMed  Google Scholar 

  • Rich JT, Neely JG, Paniello RC, Voelker CC, Nussembaum B, Wang EB (2010) A practical guide to understanding Kaplan-Meier curves. Otolaryngol--Head Neck Surg 143:331–336. doi:10.1016/j.otohns.2010.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Rillig MC, Field CB (2003) Arbuscular mycorrhizae respond to plants exposed to elevated atmospheric CO2 as a function of soil depth. Plant Soil 254:383–391

    Article  CAS  Google Scholar 

  • Rowe HI, Brown CS, Claassen VP (2007) Comparisons of mycorrhizal responsiveness with field soil and commercial inoculum for six native montane species and Bromus tectorum. Restor Ecol 15:44–52. doi:10.1111/j.1526-100X.2006.00188.x

    Article  Google Scholar 

  • Santos-Gonzalez JC, Finlay RD, Tehler A (2007) Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland. Appl Environ Microbiol 73:5613–5623. doi:10.1128/aem.00262-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardans J, Penuelas J (2007) Drought changes phosphorus and potassium accumulation patterns in an evergreen Mediterranean forest. Funct Ecol 21:191–201. doi:10.1111/j.1365-2435.2007.01247.x

    Article  Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515. doi:10.1111/j.1461-0248.2006.00910.x

    Article  PubMed  Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 323:3–20

    Article  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250. doi:10.1146/annurev-arplant-042110-103846

    Article  CAS  PubMed  Google Scholar 

  • Stahl PD, Schuman GE, Frost SM, Williams SE (1998) Arbuscular mycorrhizae and water stress tolerance of Wyoming big sagebrush seedlings. Soil Sci Soc Am J 62:1309–1313

    Article  CAS  Google Scholar 

  • Stahl PD, Williams S, Christensen M (1988) Efficacy of native vesicular‐arbuscular mycorrhizal fungi after severe soil disturbance. New Phytol 110:347–354

    Article  Google Scholar 

  • Suriyagoda LDB, Ryan MH, Renton M, Lambers H (2014) Plant responses to limited moisture and phosphorus availability: a meta-analysis. Adv Agron 124:143–200. doi:10.1016/b978-0-12-800138-7.00004-8

    Article  CAS  Google Scholar 

  • Symanczik S, Courty P-E, Boller T, Wiemkem A, Al-Yahya’ei MN (2015) Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species. Mycorrhiza 25:1–9. doi:10.1007/s00572-015-0638-3

    Article  Google Scholar 

  • Torrecillas E, del Mar AM, Roldan A (2012) Differences in the AMF diversity in soil and roots between two annual and perennial gramineous plants co-occurring in a Mediterranean, semiarid degraded area. Plant Soil 354:97–106. doi:10.1007/s11104-011-1047-9

    Article  CAS  Google Scholar 

  • Trent JD, Svejcar TJ, Blank RR (1994) Mycorrhizal colonization, hyphal lengths, and soil moisture associated with two Artemisia tridentata subspecies. West North Am Nat 54:291–300

    Google Scholar 

  • Turnau K, Haselwandter K (2002) Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In: Schüepp H, Barea JM, Haselwandter K (eds) Gianinazzi S. Mycorrhizal Technology in Agriculture, Birkhäuser Basel, pp 137–149

    Google Scholar 

  • Viechtbauer W (2010) Conducting meta-analyses in R with the metafor Package. J Stat Softw 36:1–48

    Article  Google Scholar 

  • Vilarino A, Arines J (1991) Numbers and viability of vesicular-arbuscular fungal propagules in field soil samples after wildfire. Soil Biol Biochem 23:1083–1087

    Article  Google Scholar 

  • Weinbaum BS, Allen MF, Allen EB (1996) Survival of arbuscular mycorrhizal fungi following reciprocal transplanting across the Great Basin. USA Ecol Appl 6:1365–1372

    Article  Google Scholar 

  • Wicklow-Howard M (1989) The occurrence of vesicular-arbuscular mycorrhizae in burned areas of the Snake River Birds of Prey Area, Idaho. Mycotaxon 34:253–257

    Google Scholar 

  • Wu Q-S, Zou Y-N (2010) Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Sci Hortic 125:289–293. doi:10.1016/j.scienta.2010.04.001

    Article  CAS  Google Scholar 

  • Wu QS, Zou YN, Xia RX (2006) Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. Eur J Soil Biol 42:166–172

    Article  CAS  Google Scholar 

  • Yang F, Li G, Zhang DE, Christie P, Li XL, Gai P (2010) Geographical and plant genotype effects on the formation of arbuscular mycorrhiza in Avena sativa and Avena nuda at different soil depths. Biol Fertil Soils 46:435–443

    Article  Google Scholar 

  • Zhou Z, Ma H, Liang K, Huang G, Pinyopusarerk K (2012) Improved tolerance of teak (Tectona grandis L.f.) seedlings to low-temperature stress by the combined effect of arbuscular mycorrhiza and paclobutrazol. J Plant Growth Regul 31:427–435. doi:10.1007/s00344-011-9252-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the U.S. Department of Agriculture-NIFA (grant No 2010-85101-20480) and the Great Basin Native Plant Project. The authors wish to thank Anne Halford from the Bureau of Land Management and Drs. James Smith and Merlin White from Boise State University for valuable discussions during this study. The authors also wish to thank two anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo D. Serpe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM. 1

(DOC 205 kb)

ESM. 2

(DOC 204 kb)

ESM. 3

(DOC 207 kb)

ESM. 4

(DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidson, B.E., Novak, S.J. & Serpe, M.D. Consequences of inoculation with native arbuscular mycorrhizal fungi for root colonization and survival of Artemisia tridentata ssp. wyomingensis seedlings after transplanting. Mycorrhiza 26, 595–608 (2016). https://doi.org/10.1007/s00572-016-0696-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-016-0696-1

Keywords

Navigation