Skip to main content
Log in

Percutaneous full endoscopic posterior decompression of thoracic myelopathy caused by ossification of the ligamentum flavum

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Ossification of ligamentum flavum (OLF) is the leading cause of progressive thoracic myelopathy (TM) in East Asian countries. Surgical decompression is the general treatment for TM. This study investigated the application of percutaneous full endoscopic posterior decompression (PEPD) for the treatment of thoracic OLF.

Methods

Eighteen patients with TM were treated by PEPD under local anaesthesia. Patients had an average age of 59.1 years and single-level lesions mostly at the lower thoracic vertebrae. Computed tomography and magnetic resonance imaging were used to classify the OLF. The pre- and postoperative neurological statuses were evaluated using the American Spinal Injury Association (ASIA) sensory and motor score, modified Japanese Orthopaedic Association (mJOA) score and Frankel grade.

Results

OLF for all patients was classed as lateral, extended, and enlarged types without comma and tram track signs. Decompression was completed, and a dome-shaped laminotomy was performed through limited laminectomy and flavectomy. Dural tears in 2 patients were the only observed complication. The average score of ASIA sensory and motor, mJOA, as well as the Frankel grade improved significantly after surgery at an average follow-up time of 17.4 months. The average recovery rate (RR) was 47.5% as calculated from the mJOA scores. According to RR, 10 cases were classified as good, 4 cases fair, and 4 cases unchanged.

Conclusions

For patients with thoracic OLF at a single level and lateral, extended, and enlarged types without comma and tram track signs, it is safe and reliable to perform PEPD, which has satisfactory clinical results.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yoon SH, Kim WH, Chung SB et al (2011) Clinical analysis of thoracic ossified ligamentum flavum without ventral compressive lesion. Eur Spine J 20:216–223

    Article  PubMed  Google Scholar 

  2. Guo JJ, Luk KD, Karppinen J et al (2010) Prevalence, distribution, and morphology of ossification of the ligamentum flavum: a population study of one thousand seven hundred thirty-six magnetic resonance imaging scans. Spine 35:51–56

    Article  CAS  PubMed  Google Scholar 

  3. Ahn DK, Lee S, Moon SH et al (2014) Ossification of the ligamentum flavum. Asian Spine J 8:89–96

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sanghvi AV, Chhabra HS, Mascarenhas AA et al (2011) Thoracic myelopathy due to ossification of ligamentum flavum: a retrospective analysis of predictors of surgical outcome and factors affecting preoperative neurological status. Eur Spine J 20:205–215

    Article  PubMed  Google Scholar 

  5. Jia LS, Chen XS, Zhou SY et al (2010) En bloc resection of lamina and ossified ligamentum flavum in the treatment of thoracic ossification of the ligamentum flavum. Neurosurgery 66:1181–1186

    Article  PubMed  Google Scholar 

  6. Hirabayashi H, Ebara S, Takahashi J et al (2008) Surgery for thoracic myelopathy caused by ossification of the ligamentum flavum. Surg Neurol 69:114–116

    Article  PubMed  Google Scholar 

  7. Ikuta K, Tarukado K, Senba H et al (2011) Decompression procedure using a microendoscopic technique for thoracic myelopathy caused by ossification of the ligamentum flavum. Minim Invasive Neurosurg 54:271–273

    Article  CAS  PubMed  Google Scholar 

  8. Baba S, Oshima Y, Iwahori T et al (2016) Microendoscopic posterior decompression for the treatment of thoracic myelopathy caused by ossification of the ligamentum flavum: a technical report. Eur Spine J 25:1912–1919

    Article  PubMed  Google Scholar 

  9. Zhao W, Shen C, Cai R et al (2017) Minimally invasive surgery for resection of ossification of the ligamentum flavum in the thoracic spine. Wideochir Inne Tech Maloinwazyjne 12:96–105

    PubMed  PubMed Central  Google Scholar 

  10. Muthukumar N (2009) Dural ossification in ossification of the ligamentum flavum: a preliminary report. Spine 34:2654–2661

    Article  PubMed  Google Scholar 

  11. Sun X, Sun C, Liu X et al (2012) The frequency and treatment of dural tears and cerebrospinal fluid leakage in 266 patients with thoracic myelopathy caused by ossification of the ligamentum flavum. Spine 37:E702–E707

    Article  PubMed  Google Scholar 

  12. Epstein NE (2013) A review article on the diagnosis and treatment of cerebrospinal fluid fistulas and dural tears occurring during spinal surgery. Surg Neurol Int 4:S301–S317

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang H, Ma L, Xue R et al (2016) The incidence and risk factors of postoperative neurological deterioration after posterior decompression with or without instrumented fusion for thoracic myelopathy. Medicine (Baltimore) 95:e5519

    Article  Google Scholar 

  14. Aizawa T, Sato T, Sasaki H et al (2006) Thoracic myelopathy caused by ossification of the ligamentum flavum: clinical features and surgical results in the Japanese population. J Neurosurg Spine 5:514–519

    Article  PubMed  Google Scholar 

  15. Aizawa T, Sato T, Ozawa H et al (2008) Sagittal alignment changes after thoracic laminectomy in adults. J Neurosurg Spine 8:510–516

    Article  PubMed  Google Scholar 

  16. Okada K, Oka S, Tohge K et al (1991) Thoracic myelopathy caused by ossification of the ligamentum flavum. Clinicopathologic study and surgical treatment. Spine 16:280–287

    Article  CAS  PubMed  Google Scholar 

  17. Wang T, Yin C, Wang D et al (2017) Surgical technique for decompression of severe thoracic myelopathy due to tuberous ossification of ligamentum flavum. Clin Spine Surg 30:E7–E12

    Article  PubMed  Google Scholar 

  18. Choi G, Pophale CS, Patel B et al (2017) Endoscopic spine surgery. J Korean Neurosurg Soc 60:485–497

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sairyo K, Chikawa T, Nagamachi A (2018) State-of-the-art transforaminal percutaneous endoscopic lumbar surgery under local anesthesia: discectomy, foraminoplasty, and ventral facetectomy. J Orthop Sci 23:229–236

    Article  PubMed  Google Scholar 

  20. Jia ZQ, He XJ, Zhao LT et al (2018) Transforaminal endoscopic decompression for thoracic spinal stenosis under local anesthesia. Eur Spine J 27:465–471

    Article  PubMed  Google Scholar 

  21. Miao X, He D, Wu T et al (2018) Percutaneous endoscopic spine minimally invasive technique for decompression therapy of thoracic myelopathy caused by ossification of the ligamentum flavum. World Neurosurg 114:8–12

    Article  PubMed  Google Scholar 

  22. Kuh SU, Kim YS, Cho YE et al (2006) Contributing factors affecting the prognosis surgical outcome for thoracic OLF. Eur Spine J 15:485–491

    Article  PubMed  Google Scholar 

  23. Ando K, Imagama S, Ito Z et al (2013) Predictive factors for a poor surgical outcome with thoracic ossification of the ligamentum flavum by multivariate analysis: a multicenter study. Spine 38:E748–E754

    Article  PubMed  Google Scholar 

  24. Ju JH, Kim SJ, Kim KH et al (2018) Clinical relation among dural adhesion, dural ossification, and dural laceration in the removal of ossification of the ligamentum flavum. Spine J 18:747–754

    Article  PubMed  Google Scholar 

  25. Feng F, Sun C, Chen Z (2015) A diagnostic study of thoracic myelopathy due to ossification of ligamentum flavum. Eur Spine J 24:947–954

    Article  PubMed  Google Scholar 

  26. Yamasaki R, Okuda S, Maeno T et al (2013) Surgical outcomes of posterior thoracic interbody fusion for thoracic disc herniations. Eur Spine J 22:2496–2503

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kirshblum SC, Waring W, Biering-Sorensen F et al (2011) Reference for the 2011 revision of the international standards for neurological classification of spinal cord injury. J Spinal Cord Med 34:547–554

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hirabayashi K, Miyakawa J, Satomi K et al (1981) Operative results and postoperative progression of ossification among patients with ossification of cervical posterior longitudinal ligament. Spine 6:354–364

    Article  CAS  PubMed  Google Scholar 

  29. Li M, Meng H, Du J et al (2012) Management of thoracic myelopathy caused by ossification of the posterior longitudinal ligament combined with ossification of the ligamentum flavum-a retrospective study. Spine J 12:1093–1102

    Article  PubMed  Google Scholar 

  30. Palmer S, Turner R, Palmer R (2002) Bilateral decompression of lumbar spinal stenosis involving a unilateral approach with microscope and tubular retractor system. J Neurosurg 97:213–217

    PubMed  Google Scholar 

  31. Hur H, Lee JK, Lee JH et al (2009) Thoracic myelopathy caused by ossification of the ligamentum flavum. J Korean Neurosurg Soc 46:189–194

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gao R, Yuan W, Yang L et al (2013) Clinical features and surgical outcomes of patients with thoracic myelopathy caused by multilevel ossification of the ligamentum flavum. Spine J 13:1032–1038

    Article  PubMed  Google Scholar 

  33. Kang KC, Lee CS, Shin SK et al (2011) Ossification of the ligamentum flavum of the thoracic spine in the Korean population. J Neurosurg Spine 14:513–519

    Article  PubMed  Google Scholar 

  34. Kawaguchi Y, Yasuda T, Seki S et al (2013) Variables affecting postsurgical prognosis of thoracic myelopathy caused by ossification of the ligamentum flavum. Spine J 13:1095–1107

    Article  PubMed  Google Scholar 

  35. Matsumoto Y, Harimaya K, Doi T et al (2012) Clinical characteristics and surgical outcome of the symptomatic ossification of ligamentum flavum at the thoracic level with combined lumbar spinal stenosis. Arch Orthop Trauma Surg 132:465–470

    Article  PubMed  Google Scholar 

  36. Yu S, Wu D, Li F et al (2013) Surgical results and prognostic factors for thoracic myelopathy caused by ossification of ligamentum flavum: posterior surgery by laminectomy. Acta Neurochir (Wien) 155:1169–1177

    Article  Google Scholar 

  37. Onishi E, Yasuda T, Yamamoto H et al (2016) Outcomes of surgical treatment for thoracic myelopathy: a single-institutional study of 73 patients. Spine 41:E1356–E1363

    Article  PubMed  Google Scholar 

  38. Sun J, Zhang C, Ning G et al (2014) Surgical strategies for ossified ligamentum flavum associated with dural ossification in thoracic spinal stenosis. J Clin Neurosci 21:2102–2106

    Article  PubMed  Google Scholar 

  39. He S, Hussain N, Li S et al (2005) Clinical and prognostic analysis of ossified ligamentum flavum in a Chinese population. J Neurosurg Spine 3:348–354

    Article  PubMed  Google Scholar 

  40. Li Z, Ren D, Zhao Y et al (2016) Clinical characteristics and surgical outcome of thoracic myelopathy caused by ossification of the ligamentum flavum: a retrospective analysis of 85 cases. Spinal Cord 54:188–196

    Article  CAS  PubMed  Google Scholar 

  41. Kanno H, Takahashi T, Aizawa T et al (2018) Recurrence of ossification of ligamentum flavum at the same intervertebral level in the thoracic spine: a report of two cases and review of the literature. Eur Spine J 27:359–367

    Article  PubMed  Google Scholar 

  42. Miyashita T, Ataka H, Tanno T (2013) Spontaneous reduction of a floated ossification of the ligamentum flavum after posterior thoracic decompression (floating method); report of a case (abridged translation of a primary publication). Spine J 13:e7–e9

    Article  PubMed  Google Scholar 

  43. Shimamura T, Kato S, Toba T et al (2001) Sagittal splitting laminoplasty for spinal canal enlargement for ossification of the spinal ligaments (OPLL and OLF). Semin Musculoskelet Radiol 5:203–206

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He-Jun Yang or Ji-Xian Qian.

Ethics declarations

Conflict of interest

All authors have declared that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 7283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, B., Li, XC., Zhou, CP. et al. Percutaneous full endoscopic posterior decompression of thoracic myelopathy caused by ossification of the ligamentum flavum. Eur Spine J 28, 492–501 (2019). https://doi.org/10.1007/s00586-018-05866-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-018-05866-2

Keywords

Navigation