Skip to main content
Log in

Heave of a Building Induced by Swelling of an Anhydritic Triassic Claystone

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

This paper describes the conditions leading to a sustained, low-rate, heave phenomenon affecting a building founded on hard Keuper anhydritic rock. The building was located in an abandoned gypsum quarry. Monitoring data as well as vertical profiles of gypsum and anhydrite content indicate that swelling was associated with the presence of a shallow level of anhydritic clay rock. This paper concludes that the initial quarry excavation as well as the additional building foundation work modified the original stress state and contributed to opening fractures at depth. It also resulted in a facilitated access of water to the upper rock levels, immediately under the foundation footings. Measured heave rates are substantially lower than other rates recorded in a few recent cases. An explanation is provided for the difference. This paper describes a comforting solution for the building.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Alonso EE, Casanovas JC (1991) Micropile foundation of a singular building over existing underground structures. In: Proc. Fondations profondes. Presse de l’École Nationale des Ponts et Chaussées, Paris, pp 93–102

  • Alonso EE, Ramon A (2013a) Heave of a railway bridge induced by gypsum crystal growth: field observations. Géotechnique 63(9):707–719 https://doi.org/10.1680/geot.12.P.034

    Article  Google Scholar 

  • Alonso EE, Ramon A (2013b) Massive sulfate attack to cement-treated railway embankments. Géotechnique. https://doi.org/10.1680/geot.SIP13.P.023

    Google Scholar 

  • Alonso E, Ramon A (2015) Clay hydration and crystal growth in expansive anhydritic claystone. In: The Ascó Power Plant case. Geophysical Research Abstracts 17, EGU2015-4026, EGU General Assembly. Vienna

  • Alonso EE, Berdugo IR, Ramon A (2013) Extreme expansive phenomena in anhydritic-gypsiferous claystone: the case of Lilla tunnel. Géotechnique 63(7):584–612. https://doi.org/10.1680/geot.12.P.143

    Article  Google Scholar 

  • Amstad C, Kovári K (2001) Untertagbau in quellfähigem fels. Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation (UVEK). Bundesamt für Strassen (ASTRA), Zürich

    Google Scholar 

  • Anagnostou G (2007) Design uncertainties in tunnelling through anhydritic swelling rocks. Felsbau 27(4):48–54

    Google Scholar 

  • Hawkins AB, Pinches GM (1987a) Cause and significance of heave at Llandough Hospital, Cardiff—a case history of ground floor heave due to gypsum growth. Q J Eng Geol Hydrogeol 20(1):41–57

    Article  Google Scholar 

  • Hawkins AB, Pinches GM (1987b). Sulphate analysis on black mudstones. Géotechnique 37(2):191–196

    Article  Google Scholar 

  • Hull AB, Cody RD, Green SA (1980) Minimization of building heave by chemically inhibiting gypsum-induced shale expansion; a preliminary report. In: 21st U.S. Symposium on Rock Mechanics (USRMS), 27–30 May, Rolla, Missouri

  • Kleinert K, Einsele G (1978) Sohlhebungen in Straßeneinschnitten in anhydritführendem Gipskeuper. - Ber. 3. nat. Tag Felsmech, 9 Abb.; Aachen (DGEG), pp 103–124

  • Kovári K, Descoeudres F (2001) Tunnelling Switzerland. Swiss Tunnelling Society, Swiss. ISBN:3-9803390-6-8

    Google Scholar 

  • Parkhurst DL (1995) User’s guide to PHREEQC-A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations, Water-Resources Investigations Report 95-4227. US Geological Survey, Denver

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Water-Resources Investigations Report 99- 4259. US Geological Survey Earth Science Information Center, Denver

    Google Scholar 

  • Ramon A, Alonso EE (2013) Heave of a railway bridge: modelling gypsum crystal growth. Géotechnique 63(9):720–732. https://doi.org/10.1680/geot.12.P.035

    Article  Google Scholar 

  • Ramon A, Alonso EE, Olivella S (2017). Hydro-chemo-mechanical modelling of tunnels in sulfated rocks. Géotechnique 67(11):968–982. https://doi.org/10.1680/jgeot.SiP17.P.252

    Article  Google Scholar 

  • Ruch C, Wirsing G (2013) Erkundung und Sanierungsstrategien im Erdwärmesonden-Schadensfall Staufen i. Br (Exploration and rehabilitation strategies in case of damaging geothermal heat exchangers in Staufen i. Br. Geotechnik 36(3):147–159

    Article  Google Scholar 

  • Sass I, Burbaum U (2010) Damage to the historic town of Staufen (Germany) caused by geothermal drillings through anhydrite-bearing formations. Acta Carsologica 39(2):233–245

    Article  Google Scholar 

  • Serafeimidis K, Anagnostou G (2014) On the crystallisation pressure of gypsum. Environ Earth Sci 72:4985–4994

    Article  Google Scholar 

  • Serafeimidis K, Anagnostou G, Vrakas A (2014) Scale effects in relation to swelling pressure in anhydritic claystones. In: International symposium on geomechanics from micro to macro, Cambridge, pp 795–800

  • Wittke W (2006). Design, construction, supervision and long-term behaviour of tunnels in swelling rocks. In: Proc Eurock 2006, Van Cotthen, Charlier, Thimus, Tshibangu eds, Taylor, Francis Grup, London, pp 211–216

  • Wittke W (2014) Rock mechanics based on an anisotropic jointed rock model (AJRM). Ernst, Sohn, Berlin

    Book  Google Scholar 

  • Wittke W, Wittke M, Wittke-Gattermann P, Stoffgesetz EC (2017) Berechnungsverfahren, felsmechanische Kennwerte und Ausführungsstatik für Tunnel im anhydritführenden Gebirge. Vortrag anlässlich des 3. Felsmechanik- und Tunnelbautages im WBI-Center am 11.05.2017, WBI-Print 20, Weinheim

Download references

Acknowledgements

The authors thank Dr. E. Tauler from the Crystallographic Department of the Universitat de Barcelona for her contribution to the identification of minerals. The collaboration with the architects R. Brufau and C. Gil and the Àrea Metropolitana de Barcelona is also acknowledged. The company Soldata installed the field instrumentation and provided the monitoring data included in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo E. Alonso.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramon, A., Alonso, E.E. Heave of a Building Induced by Swelling of an Anhydritic Triassic Claystone. Rock Mech Rock Eng 51, 2881–2894 (2018). https://doi.org/10.1007/s00603-018-1503-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1503-4

Keywords

Navigation