Skip to main content
Log in

Circular exponential amplification of photoinduced electron transfer using hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric determination of pathogenic bacteria

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a fluorometric strategy for the detection of pathogenic bacteria with ultrasensitivity and high specificity. This strategy relies on the combination of target-modulated photoinduced electron transfer (PET) between G-quadruplex DNAzyme and DNA (labeled with silver nanoclusters) along with hairpin probe-based circular exponential amplification. The reaction system involves three hairpin probes (H1, H2 and H3). Probe H1 contains an aptamer against S. Typhimurium and the recognition sequence for nicking endonuclease. It is used to recognize S. Typhimurium and participates in polymerase-catalyzed target recycle amplification and secondary-target recycle amplification. Probe H2 contains an aptamer against hemin and is used to form the G-quadruplex DNAzyme in the presence of hemin and potassium ion. It acts as the electron acceptor and quenches the fluorescence of the labeled DNA. Fluorescence is best measured at excitation/emission wavelengths of 567/650 nm. Probe H3 contains the template sequence for the synthesis of AgNCs and the H2-annealing sequence. Both H2 and H3 are utilized to perform a strand displacement reaction and to achieve PET between G-quadruplex DNAzyme and DNA/AgNCs. To the best of our knowledge, this is the first example of a PET between G-quadruplex DNAzyme and DNA/AgNCs coupled with circular exponential amplification. The assay has an ultra-low detection limit 8 cfu·mL−1 of S. Typhimurium. The assay is rapid, accurate, inexpensive and simple. Hence, the strategy may represent a useful platform for ultrasensitive and highly specific detection of pathogenic bacteria as encountered in food analysis and clinical diagnosis.

The reaction system includes three hairpin probes (H1, H2 and H3), primer probe (P), Phi 29 DNA ploymerase (Phi 29) and nicking endonuclease Nt.AlwI (Nt.AlwI). Phi 29 and Nt.AlwI -assisted signal amplification leads to the recycling of target and produces numerous single stranded-DNAs (S). Strand displacement amplification leads to photoinduced electron transfer (PET) between G-quadruplex DNAzyme and DNA/AgNCs. HAP-based circular exponential amplification of PET results in an ultrasensitive fluorometric assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Duan N, Wu S, Dai S, Miao T, Chen J, Wang Z (2015) Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim Acta 182:917–923

    Article  CAS  Google Scholar 

  2. Tokonami S, Nakadoi Y, Takahashi M, Ikemizu M, Kadoma T, Saimatsu K, Dung L, Shiigi H, Nagaoka T (2013) Label-free and selective bacteria detection using a film with transferred bacterial configuration. Anal Chem 85:4925–4929

    Article  CAS  Google Scholar 

  3. Leng XQ, Wang Y, Liu S, Pei QQ, Cui XJ, Tu YQ, Liu XJ, Huang JD (2017) Enzymatic repairing amplification-based versatile signal-on fluorescence sensing platform for detecting pathogenic bacteria. Sens Actuators B: Chem 252:689–696

    Article  CAS  Google Scholar 

  4. Donhauser SC, Niessner R, Seidel M (2011) Sensitive quantification of Escherichia Coli O157: H7, salmonella enterica, and campylobacter jejuni by combining stopped polymerase chain reaction with chemiluminescence flow-through DNA microarray analysis. Anal Chem 83:3153–3160

    Article  CAS  Google Scholar 

  5. Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM (2011) Foodborne illness acquired in the United States-unspecified agents. Emerging Infect Dis 17:16−22

    Google Scholar 

  6. Brooks BW, Devenish J, Lutze-Wallace CL, Milnes D, Robertson RH, Berlie S (2004) Evaluation of a monoclonal antibody-based enzyme-linked immunosorbent assay for detection of campylobacter fetus in bovine preputial washing and vaginal mucus samples. G Vet Microbiol 103:77−84

    Google Scholar 

  7. Pappert G, Rieger M, Niessner R, Seidel M (2010) Immunomagnetic nanoparticle-based sandwich chemiluminescence-ELISA for the enrichment and quantification of E. coli. Microchim Acta 168:1–8

    Article  CAS  Google Scholar 

  8. Roda A, Mirasoli M, Roda B, Bonviciniv F, Colliva C (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178:7–28

    Article  CAS  Google Scholar 

  9. Wen CY, Hu J, Zhang ZL, Tian ZQ, Ou GP, Liao YL, Li Y, Xie M, Sun ZY, Pang DW (2013) One-step sensitive detection of salmonella typhimurium by coupling magnetic capture and fluorescence identification with functional nanospheres. Anal Chem 85:1223–1230

    Article  CAS  Google Scholar 

  10. Roda A, Mirasoli M, Roda B, Bonvicini F, Colliva C, Reschiglian P (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178:7–28

    Article  CAS  Google Scholar 

  11. Nakano S, Fukuda M, Tamura T, Sakaguchi R, Nakata E, Morii T (2013) Simultaneous detection of ATP and GTP by covalently linked fluorescent ribonucleopeptide sensors. J Am Chem Soc 135:3465–3473

    Article  CAS  Google Scholar 

  12. Duan YF, Ning Y, Song Y, Deng L (2014) Fluorescent aptasensor for the determination of salmonella typhimurium based on a graphene oxide platform. Microchim Acta 181:647–653

    Article  CAS  Google Scholar 

  13. Zhang Y, Tang L, Yang F, Sun Z, Zhang GJ (2015) Highly sensitive DNA-based fluorometric mercury(II) bioassay based on graphene oxide and exonuclease III-assisted signal amplification. Microchim Acta 182:1535–1541

    Article  CAS  Google Scholar 

  14. Tyagi S, Kramer F (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    Article  CAS  Google Scholar 

  15. Katz E, Willner I (2004) Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108

    Article  CAS  Google Scholar 

  16. Feng C, Tu J, Liang C, Yang B, Chen C, Chen X (2016) Fluorescent drug screening based on aggregation of DNA-templated silver nanoclusters, and its application to iridium (III) derived anticancer drugs. Microchim Acta 183:1571–1577

    Article  Google Scholar 

  17. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  18. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435

    Article  CAS  Google Scholar 

  19. Petty JT, Story SP, Juarez S, Votto SS, Herbst AG, Degtyareva NN, Sengupta B (2011) Optical sensing by transforming chromophoric silver clusters in DNA nanoreactors. Anal Chem 84:356–364

    Article  Google Scholar 

  20. Enkin N, Sharon E, Golub E, Willner I (2014) Ag nanocluster/DNA hybrids: functional modules for the detection of nitroaromatic and RDX explosives. Nano Lett 14:4918–4922

    Article  CAS  Google Scholar 

  21. Fan D, Zhu J, Liu Y, Wang E, Dong S (2016) Label-free and enzyme-free platform for the construction of advanced DNA logic devices based on the assembly of graphene oxide and DNA-templated AgNCs. Nano 8:3834–3840

    CAS  Google Scholar 

  22. Ma JL, Yin BC, Le HN, Ye BC (2015) Label-free detection of sequence-specific DNA based on fluorescent silver nanoclusters-assisted surface plasmon-enhanced energy transfer. ACS Appl Mater Interfaces 7:12856–12863

    Article  CAS  Google Scholar 

  23. Enkin N, Wang F, Sharon E, Albada HB, Willner I (2014) Multiplexed analysis of genes using nucleic acid-stabilized silver-nanocluster quantum dots. ACS Nano 8:11666–11673

    Article  CAS  Google Scholar 

  24. Wu M, Xu X, Wang J, Li L (2015) Fluorescence resonance energy transfer in a binary organic nanoparticle system and its application. ACS Appl Mater Interfaces 7:8243–8250

    Article  CAS  Google Scholar 

  25. Zhang L, Zhu J, Guo S, Li T, Li J, Wang E (2013) Photoinduced electron transfer of DNA/ag nanoclusters modulated by G-quadruplex/hemin complex for the construction of versatile biosensors. J Am Chem Soc 135:2403–2406

    Article  CAS  Google Scholar 

  26. Lu S, Wang S, Zhao J, Sun J, Yang X (2017) Fluorescence light-up biosensor for MicroRNA based on the distance-dependent Photoinduced electron transfer. Anal Chem 89:8429–8436

    Article  CAS  Google Scholar 

  27. Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2017

  28. Chen R, Huang X, Xu H, Xiong Y, Li Y (2015) Plasmonic enzyme-linked immunosorbent assay using nanospherical brushes as a catalase container for colorimetric detection of ultralow concentrations of listeria monocytogenes. ACS Appl Mater Interfaces 7:28632–28639

    Article  CAS  Google Scholar 

  29. Bulard E, Bouchet-Spinelli A, Chaud P, Roget A, Calemczuk R, Fort S, Livache T (2015) Carbohydrates as new probes for the identification of closely related Escherichia coli strains using surface plasmon resonance imaging. Anal Chem 87:1804–1811

    Article  CAS  Google Scholar 

  30. Kong W, Xiong J, Yue H, Fu Z (2015) Sandwich fluorimetric method for specific detection of Staphylococcus Aureus based on antibiotic-affinity strategy. Anal Chem 87:9864–9868

    Article  CAS  Google Scholar 

  31. Wang X, Zhu P, Pi F, Jiang H, Shao J, Zhang Y, Sun X (2016) A sensitive and simple macrophage-based electrochemical biosensor for evaluating lipopolysaccharide cytotoxicity of pathogenic bacteria. Biosens Bioelectron 81:349–357

    Article  CAS  Google Scholar 

  32. Li Z, Yang H, Sun L, Qi H, Gao Q, Zhang C (2015) Electrogenerated chemiluminescence biosensors for the detection of pathogenic bacteria using antimicrobial peptides as capture/signal probes. Sens. Actuators B: Chem. 210:468–474

    Article  CAS  Google Scholar 

  33. Zhu H, Zhao G, Wang SQ, Dou W (2017) Photometric sandwich immunoassay for salmonella pullorum and Salmonella Gallinarum using horseradish peroxidase and magnetic silica nanoparticles. Microchim Acta 184:1873–1880

    Article  CAS  Google Scholar 

  34. Liu K, Yan X, Mao B, Wang S, Deng L (2016) Aptamer-based detection of Salmonella enteritidis using double signal amplification by Klenow fragment and dual fluorescence. Microchim Acta 183:643–649

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31471644, 21405060), Primary Research & Development Plan of Shandong Province (2017GSF220009, 2016GSF120006) and Shandong Province Natural Science Foundation of China (ZR2016BL27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Liu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 3372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, X., Wang, Y., Li, R. et al. Circular exponential amplification of photoinduced electron transfer using hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric determination of pathogenic bacteria. Microchim Acta 185, 168 (2018). https://doi.org/10.1007/s00604-018-2698-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2698-5

Keywords

Navigation