Skip to main content

Advertisement

Log in

Magnetic nanoparticles for smart electrochemical immunoassays: a review on recent developments

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (with 129 refs) summarizes the progress in electrochemical immunoassays combined with magnetic particles that was made in the past 5 years. The specifity of antibodies linked to electrochemical transduction (by amperometry, voltammetry, impedimetry or electrochemiluminescence) gains further attractive features by introducing magnetic nanoparticles (MNPs). This enables fairly easy preconcentration of analytes, minimizes matrix effects, and introduces an appropriate label. Following an introduction into the fundamentals of electrochemical immunoassays and on nanomaterials for respective uses, a large chapter addresses method for magnetic capture and preconcentration of analytes. A next chapter discusses commonly used labels such as dots, enzymes, metal and metal oxide nanoparticles and combined clusters. The large field of hybrid nanomaterials for use in such immunoassays is discussed next, with a focus on MNPs composites with various kinds of graphene variants, polydopamine, noble metal nanoparticles or nanotubes. Typical applications address clinical markers (mainly blood and urine parameters), diagnosis of cancer (markers and cells), detection of pathogens (with subsections on viruses and bacteria), and environmental and food contaminants as toxic agents and pesticides. A concluding section summarizes the present status, current challenges, and highlights future trends.

Magnetic nanoparticles (MNP) with antibodies (Ab) capture and preconcentrate analyte from sample (a) and afterwards become magnetically (b) or immunospecifically (c) bound at an electrode. Signal either increases due to the presence of alabel (b) or decreases as the redox probe is blocked (c).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Skládal P (1997) Advances in electrochemical immunosensors. Electroanalysis 9:737–745. https://doi.org/10.1002/elan.1140091002

    Article  Google Scholar 

  2. Kokkinos C, Economou A, Prodromidis MI (2016) Electrochemical immunosensors: critical survey of different architectures and transduction strategies. TrAC Trends Anal Chem 79:88–105. https://doi.org/10.1016/j.trac.2015.11.020

    Article  CAS  Google Scholar 

  3. Galkin OY, Besarab OB, Pysmenna MO et al (2017) Modern magnetic immunoassay: biophysical and biochemical aspects. Regul Mech Biosyst 9:47–55. https://doi.org/10.15421/021806

    Article  Google Scholar 

  4. Farka Z, Juřík T, Kovář D, Trnková L, Skládal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev 117:9973–10042. https://doi.org/10.1021/acs.chemrev.7b00037

    Article  CAS  PubMed  Google Scholar 

  5. Urbanova V, Magro M, Gedanken A, Baratella D, Vianello F, Zboril R (2014) Nanocrystalline Iron oxides, composites, and related materials as a platform for electrochemical, magnetic, and chemical biosensors. Chem Mater 26:6653–6673. https://doi.org/10.1021/cm500364x

    Article  CAS  Google Scholar 

  6. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181. https://doi.org/10.1088/0022-3727/36/13/201

    Article  CAS  Google Scholar 

  7. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  PubMed  Google Scholar 

  8. Li L, Chen Y, Zhu J-J (2016) Recent advances in Electrochemiluminescence analysis. Anal Chem 89:358–371. https://doi.org/10.1021/acs.analchem.6b04675

    Article  CAS  PubMed  Google Scholar 

  9. Lisdat F, Schäfer D, Kapp A (2013) Quantum dots on electrodes—new tools for bioelectroanalysis. Anal Bioanal Chem 405:3739–3752. https://doi.org/10.1007/s00216-013-6789-1

    Article  CAS  PubMed  Google Scholar 

  10. Carinelli S, Xufré Ballesteros C, Martí M, Alegret S, Pividori MI (2015) Electrochemical magneto-actuated biosensor for CD4 count in AIDS diagnosis and monitoring. Biosens Bioelectron 74:974–980. https://doi.org/10.1016/j.bios.2015.07.053

    Article  CAS  PubMed  Google Scholar 

  11. Jalal UM, Jin GJ, Eom KS, Kim MH, Shim JS (2018) On-chip signal amplification of magnetic bead-based immunoassay by aviating magnetic bead chains. Bioelectrochem 122:221–226. https://doi.org/10.1016/j.bioelechem.2017.11.001

    Article  CAS  Google Scholar 

  12. Yu X, Feng X, Hu J, Zhang Z-L, Pang D-W (2011) Controlling the magnetic field distribution on the micrometer scale and generation of magnetic bead patterns for microfluidic applications. Langmuir 27:5147–5156. https://doi.org/10.1021/la104400m

    Article  CAS  PubMed  Google Scholar 

  13. Munir A, Zhu Z, Wang J, Zhou HS (2014) FEM analysis of magnetic agitation for tagging biomolecules with magnetic nanoparticles in a microfluidic system. Sensors Actuators B Chem 197:1–12. https://doi.org/10.1016/j.snb.2014.01.120

    Article  CAS  Google Scholar 

  14. Chung S, Moon J-M, Choi J, Hwang H, Shim Y-B (2018) Magnetic force assisted electrochemical sensor for the detection of thrombin with aptamer-antibody sandwich formation. Biosens Bioelectron 117:480–486. https://doi.org/10.1016/j.bios.2018.06.068

    Article  CAS  PubMed  Google Scholar 

  15. Yan K, Liu Y, Guan Y, Bhokisham N, Tsao C-Y, Kim E, Shi X-W, Wang Q, Bentley WE, Payne GF (2018) Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis. Colloids Surf B Biointerfaces 169:470–477. https://doi.org/10.1016/j.colsurfb.2018.05.048

    Article  CAS  PubMed  Google Scholar 

  16. Bunyakul N, Promptmas C, Baeumner AJ (2014) Microfluidic biosensor for cholera toxin detection in fecal samples. Anal Bioanal Chem 407:727–736. https://doi.org/10.1007/s00216-014-7947-9

    Article  CAS  PubMed  Google Scholar 

  17. Taebi S, Keyhanfar M, Noorbakhsh A (2018) A novel method for sensitive, low-cost and portable detection of hepatitis B surface antigen using a personal glucose meter. J Immunol Methods 458:26–32. https://doi.org/10.1016/j.jim.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  18. Chen S, Zhang J, Gan N, Hu F, Li T, Cao Y, Pan D (2014) An on-site immunosensor for ractopamine based on a personal glucose meter and using magnetic β-cyclodextrin-coated nanoparticles for enrichment, and an invertase-labeled nanogold probe for signal amplification. Microchim Acta 182:815–822. https://doi.org/10.1007/s00604-014-1392-5

    Article  CAS  Google Scholar 

  19. Rivas L, de la Escosura-Muñiz A, Pons J, Merkoçi A (2014) Alzheimer disease biomarker detection through Electrocatalytic water oxidation induced by iridium oxide nanoparticles. Electroanalysis 26:1287–1294. https://doi.org/10.1002/elan.201400027

    Article  CAS  Google Scholar 

  20. de la Escosura-Muñiz A, Plichta Z, Horák D, Merkoçi A (2015) Alzheimer′s disease biomarkers detection in human samples by efficient capturing through porous magnetic microspheres and labelling with electrocatalytic gold nanoparticles. Biosens Bioelectron 67:162–169. https://doi.org/10.1016/j.bios.2014.07.086

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Q, Li L, Qiao Z, Lei C, Fu Y, Xie Q, Yao S, Li Y, Ying Y (2017) Electrochemical Conversion of Fe3O4 Magnetic Nanoparticles to Electroactive Prussian Blue Analogues for Self-Sacrificial Label Biosensing of Avian Influenza Virus H5N1. Anal Chem 89:12145–12151. https://doi.org/10.1021/acs.analchem.7b02784

    Article  CAS  PubMed  Google Scholar 

  22. Farka Z, Čunderlová V, Horáčková V, Pastucha M, Mikušová Z, Hlaváček A, Skládal P (2018) Prussian blue nanoparticles as a catalytic label in a Sandwich Nanozyme-linked immunosorbent assay. Anal Chem 90:2348–2354. https://doi.org/10.1021/acs.analchem.7b04883

    Article  CAS  PubMed  Google Scholar 

  23. Lago-Cachón D, Rivas M, Martínez-García JC, Oliveira-Rodríguez M, Blanco-López MC, García JA (2017) High frequency lateral flow affinity assay using superparamagnetic nanoparticles. J Magn Magn Mater 423:436–440. https://doi.org/10.1016/j.jmmm.2016.09.106

    Article  CAS  Google Scholar 

  24. Kolhatkar AG, Jamison AC, Nekrashevich I, Kourentzi K, Litvinov D, Brazdeikis A, Willson RC, Randall Lee T (2016) Enzymatic conversion of magnetic nanoparticles to a non-magnetic precipitate: a new approach to magnetic sensing. Analyst 141:5246–5251. https://doi.org/10.1039/c6an00709k

    Article  CAS  PubMed  Google Scholar 

  25. Neves MMPS, González-García MB, Hernández-Santos D, Fanjul-Bolado P (2014) Screen-printed electrochemical 96-well plate: a high-throughput platform for multiple analytical applications. Electroanalysis 26:2764–2772. https://doi.org/10.1002/elan.201400388

    Article  CAS  Google Scholar 

  26. He Z, Wei J, Gan C, Liu W, Liu Y (2017) A rolling circle amplification signal-enhanced immunosensor for ultrasensitive microcystin-LR detection based on a magnetic graphene-functionalized electrode. RSC Adv 7:39906–39913. https://doi.org/10.1039/c7ra07696g

    Article  CAS  Google Scholar 

  27. Wang Y, Ma H, Wang X, Pang X, Wu D, Du B, Wei Q (2015) Novel signal amplification strategy for ultrasensitive sandwich-type electrochemical immunosensor employing Pd–Fe3O4-GS as the matrix and SiO2 as the label. Biosens Bioelectron 74:59–65. https://doi.org/10.1016/j.bios.2015.06.033

    Article  CAS  PubMed  Google Scholar 

  28. Li F, Han J, Jiang L, Wang Y, Li Y, Dong Y, Wei Q (2015) An ultrasensitive sandwich-type electrochemical immunosensor based on signal amplification strategy of gold nanoparticles functionalized magnetic multi-walled carbon nanotubes loaded with lead ions. Biosens Bioelectron 68:626–632. https://doi.org/10.1016/j.bios.2015.01.049

    Article  CAS  PubMed  Google Scholar 

  29. Wu Z, Zhou C-H, Chen J-J, Xiong C, Chen Z, Pang D-W, Zhang Z-L (2015) Bifunctional magnetic nanobeads for sensitive detection of avian influenza a (H7N9) virus based on immunomagnetic separation and enzyme-induced metallization. Biosens Bioelectron 68:586–592. https://doi.org/10.1016/j.bios.2015.01.051

    Article  CAS  PubMed  Google Scholar 

  30. Shin K-S, Ji JH, Hwang KS, Jun SC, Kang JY (2016) Sensitivity enhancement of bead-based electrochemical impedance spectroscopy (BEIS) biosensor by electric field-focusing in microwells. Biosens Bioelectron 85:16–24. https://doi.org/10.1016/j.bios.2016.04.086

    Article  CAS  PubMed  Google Scholar 

  31. Min J, Nothing M, Coble B, Zheng H, Park J, Im H, Weber GF, Castro CM, Swirski FK, Weissleder R, Lee H (2018) Integrated biosensor for rapid and point-of-care Sepsis diagnosis. ACS Nano 12:3378–3384. https://doi.org/10.1021/acsnano.7b08965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang Z-H, Zhuo Y, Yuan R, Chai Y-Q (2016) Highly effective protein converting strategy for ultrasensitive electrochemical assay of cystatin C. Anal Chem 88:5189–5196. https://doi.org/10.1021/acs.analchem.6b00210

    Article  CAS  PubMed  Google Scholar 

  33. Jie G, Ge J, Gao X, Li C (2018) Amplified electrochemiluminescence detection of CEA based on magnetic Fe3O4/Au nanoparticles-assembled Ru/SiO2 nanocomposites combined with multiple cycling amplification strategy. Biosens Bioelectron 118:115–121. https://doi.org/10.1016/j.bios.2018.07.046

    Article  CAS  PubMed  Google Scholar 

  34. Tian L, Qi J, Qian K, Oderinde O, Cai Y, Yao C, Song W, Wang Y (2018) An ultrasensitive electrochemical cytosensor based on the magnetic field assisted binanozymes synergistic catalysis of Fe3O4 nanozyme and reduced graphene oxide/molybdenum disulfide nanozyme. Sensors Actuators B Chem 260:676–684. https://doi.org/10.1016/j.snb.2018.01.092

    Article  CAS  Google Scholar 

  35. Adornetto G, Fabiani L, Volpe G, De Stefano A, Martini S, Nenna R, Lucantoni F, Bonamico M, Tiberti C, Moscone D (2015) An electrochemical immunoassay for the screening of celiac disease in saliva samples. Anal Bioanal Chem 407:7189–7196. https://doi.org/10.1007/s00216-015-8884-y

    Article  CAS  PubMed  Google Scholar 

  36. DeGregory PR, Tsai YJ, Scida K, Richards I, Crooks RM (2016) Quantitative electrochemical metalloimmunoassay for TFF3 in urine using a paper analytical device. Analyst 141:1734–1744. https://doi.org/10.1039/c5an02386f

    Article  CAS  PubMed  Google Scholar 

  37. Ruiz-Vega G, García-Robaina A, Ben Ismail M, Pasamar H, García-Berrocoso T, Montaner J, Zourob M, Othmane A, del Campo FJ, Baldrich E (2018) Detection of plasma MMP-9 within minutes. Unveiling some of the clues to develop fast and simple electrochemical magneto-immunosensors. Biosens Bioelectron 115:45–52. https://doi.org/10.1016/j.bios.2018.05.020

    Article  CAS  PubMed  Google Scholar 

  38. De Stefano A, Volpe G, Adornetto G, Bernardini S, Nuccetelli M, Gallucci G, Di Ruvo L, Moscone D (2014) Development of a very sensitive ELIME assay for detection of sIgE to G5 and D2 aeroallergens in serum samples. Electroanalysis 26:1382–1389. https://doi.org/10.1002/elan.201300639

    Article  CAS  Google Scholar 

  39. Eletxigerra U, Martinez-Perdiguero J, Merino S, Barderas R, Ruiz-Valdepeñas Montiel V, Villalonga R, Pingarrón JM, Campuzano S (2015) Electrochemical Magnetoimmunosensor for progesterone receptor determination. Application to the simultaneous detection of estrogen and progesterone breast-cancer related receptors in raw cell lysates. Electroanalysis 28:1787–1794. https://doi.org/10.1002/elan.201501090

    Article  CAS  Google Scholar 

  40. Kongsuphol P, Ng HH, Pursey JP, Arya SK, Wong CC, Stulz E, Park MK (2014) EIS-based biosensor for ultra-sensitive detection of TNF-α from non-diluted human serum. Biosens Bioelectron 61:274–279. https://doi.org/10.1016/j.bios.2014.05.017

    Article  CAS  PubMed  Google Scholar 

  41. Vogeser M, Shipkova M, Rigo-Bonnin R, Wallemacq P, Orth M, Widmann M, Verstraete AG (2014) Multicenter analytical evaluation of the automated Electrochemiluminescence immunoassay for cyclosporine. Ther Drug Monit 36:640–650. https://doi.org/10.1097/ftd.0000000000000068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ji L, Guo Z, Yan T, Ma H, Du B, Li Y, Wei Q (2015) Ultrasensitive sandwich-type electrochemical immunosensor based on a novel signal amplification strategy using highly loaded palladium nanoparticles/carbon decorated magnetic microspheres as signal labels. Biosens Bioelectron 68:757–762. https://doi.org/10.1016/j.bios.2015.02.010

    Article  CAS  PubMed  Google Scholar 

  43. Wang D, Gan N, Zhang H, Li T, Qiao L, Cao Y, Su X, Jiang S (2015) Simultaneous electrochemical immunoassay using graphene–au grafted recombinant apoferritin-encoded metallic labels as signal tags and dual-template magnetic molecular imprinted polymer as capture probes. Biosens Bioelectron 65:78–82. https://doi.org/10.1016/j.bios.2014.09.085

    Article  CAS  PubMed  Google Scholar 

  44. Alizadeh N, Salimi A, Hallaj R (2018) Magnetoimmunosensor for simultaneous electrochemical detection of carcinoembryonic antigen and α-fetoprotein using multifunctionalized Au nanotags. J Electroanal Chem 811:8–15. https://doi.org/10.1016/j.jelechem.2017.12.080

    Article  CAS  Google Scholar 

  45. de Oliveira RAG, Materon EM, Melendez ME, Carvalho AL, Faria RC (2017) Disposable microfluidic immunoarray device for sensitive breast cancer biomarker detection. ACS Appl Mater Interfaces 9:27433–27440. https://doi.org/10.1021/acsami.7b03350

    Article  CAS  PubMed  Google Scholar 

  46. Hernández-Albors A, Colom G, Salvador J-P, Marco M-P (2018) Studies towards hcTnI Immunodetection using electrochemical approaches based on magnetic microbeads. Sensors 18:2457. https://doi.org/10.3390/s18082457

    Article  CAS  PubMed Central  Google Scholar 

  47. Liu L, Zhao G, Li Y, Li X, Dong X, Wei Q, Cao W (2018) A voltammetric immunoassay for the carcinoembryonic antigen using a self-assembled magnetic nanocomposite. Microchim Acta 185:387. https://doi.org/10.1007/s00604-018-2919-y

    Article  CAS  Google Scholar 

  48. Dong H, Han T-T, Ren L-L, Ding S-N (2017) Novel sandwich-structured electrochemiluminescence immunosensing platform via CdTe quantum dots-embedded mesoporous silica nanospheres as enhanced signal labels and Fe3O4 /SiO2 /PS nanocomposites as magnetic separable carriers. J Electroanal Chem 806:32–40. https://doi.org/10.1016/j.jelechem.2017.10.038

    Article  CAS  Google Scholar 

  49. Zhang X, Ding S-N (2017) Sandwich-structured electrogenerated chemiluminescence immunosensor based on dual-stabilizers-capped CdTe quantum dots as signal probes and Fe3O4 - au nanocomposites as magnetic separable carriers. Sensors Actuators B Chem 240:1123–1133. https://doi.org/10.1016/j.snb.2016.09.080

    Article  CAS  Google Scholar 

  50. Spencer D, Hollis V, Morgan H (2014) Microfluidic impedance cytometry of tumour cells in blood. Biomicrofluidics 8:64124. https://doi.org/10.1063/1.4904405

    Article  CAS  Google Scholar 

  51. Vidal JC, Bertolín JR, Bonel L, Asturias L, Arcos-Martínez MJ, Castillo JR (2015) A multi-electrochemical competitive Immunosensor for sensitive cocaine determination in biological samples. Electroanalysis 28:685–694. https://doi.org/10.1002/elan.201500517

    Article  CAS  Google Scholar 

  52. Torrente-Rodríguez RM, Campuzano S, Ruiz-Valdepeñas-Montiel V, Pedrero M, Fernández-Aceñero MJ, Barderas R, Pingarrón JM (2016) Rapid endoglin determination in serum samples using an amperometric magneto-actuated disposable immunosensing platform. J Pharm Biomed Anal 129:288–293. https://doi.org/10.1016/j.jpba.2016.07.020

    Article  CAS  PubMed  Google Scholar 

  53. Emami M, Shamsipur M, Saber R, Irajirad R (2014) An electrochemical immunosensor for detection of a breast cancer biomarker based on antiHER2–iron oxide nanoparticle bioconjugates. Analyst 139:2858–2866. https://doi.org/10.1039/c4an00183d

    Article  CAS  PubMed  Google Scholar 

  54. Eletxigerra U, Martinez-Perdiguero J, Merino S, Barderas R, Torrente-Rodríguez RM, Villalonga R, Pingarrón JM, Campuzano S (2015) Amperometric magnetoimmunosensor for ErbB2 breast cancer biomarker determination in human serum, cell lysates and intact breast cancer cells. Biosens Bioelectron 70:34–41. https://doi.org/10.1016/j.bios.2015.03.017

    Article  CAS  PubMed  Google Scholar 

  55. Uliana CV, Peverari CR, Afonso AS, Cominetti MR, Faria RC (2018) Fully disposable microfluidic electrochemical device for detection of estrogen receptor alpha breast cancer biomarker. Biosens Bioelectron 99:156–162. https://doi.org/10.1016/j.bios.2017.07.043

    Article  CAS  PubMed  Google Scholar 

  56. Boriachek K, Islam MN, Gopalan V, Lam AK, Nguyen N-T, Shiddiky MJA (2017) Quantum dot-based sensitive detection of disease specific exosome in serum. Analyst 142:2211–2219. https://doi.org/10.1039/c7an00672a

    Article  CAS  PubMed  Google Scholar 

  57. Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Campuzano S, Pedrero M, Farchado M, Vargas E, Manuel de Villena FJ, Garranzo-Asensio M, Barderas R, Pingarrón JM (2017) Electrochemical sensor for rapid determination of fibroblast growth factor receptor 4 in raw cancer cell lysates. PLoS One 12:e0175056. https://doi.org/10.1371/journal.pone.0175056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Martínez-García G, Serafín V, Agüí L, Yáñez-Sedeño P, Pingarrón JM (2015) Electrochemical Immunosensor for the determination of Total ghrelin hormone in saliva. Electroanalysis 27:1119–1126. https://doi.org/10.1002/elan.201400662

    Article  CAS  Google Scholar 

  59. Benuzzi MLS, Pereira SV, Raba J, Messina GA (2015) Screening for cystic fibrosis via a magnetic and microfluidic immunoassay format with electrochemical detection using a copper nanoparticle-modified gold electrode. Microchim Acta 183:397–405. https://doi.org/10.1007/s00604-015-1660-z

    Article  CAS  Google Scholar 

  60. Zhu M, Tang Y, Wen Q, Li J, Yang P (2016) Dynamic evaluation of cell-secreted interferon gamma in response to drug stimulation via a sensitive electro-chemiluminescence immunosensor based on a glassy carbon electrode modified with graphene oxide, polyaniline nanofibers, magnetic beads, and gold nanoparticles. Microchim Acta 183:1739–1748. https://doi.org/10.1007/s00604-016-1804-9

    Article  CAS  Google Scholar 

  61. Otieno BA, Krause CE, Latus A, Chikkaveeraiah BV, Faria RC, Rusling JF (2014) On-line protein capture on magnetic beads for ultrasensitive microfluidic immunoassays of cancer biomarkers. Biosens Bioelectron 53:268–274. https://doi.org/10.1016/j.bios.2013.09.054

    Article  CAS  PubMed  Google Scholar 

  62. Mars A, Ben jaafar S, Gaied ABA-E, Raouafi N (2018) Electrochemical immunoassay for lactalbumin based on the use of ferrocene-modified gold nanoparticles and lysozyme-modified magnetic beads. Microchim Acta 185:449. https://doi.org/10.1007/s00604-018-2986-0

    Article  CAS  Google Scholar 

  63. Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Campuzano S, Farchado-Dinia M, Barderas R, San Segundo-Acosta P, Montoya JJ, Pingarron JM (2016) Fast electrochemical miRNAs determination in Cancer cells and tumor tissues with antibody-functionalized magnetic microcarriers. ACS Sensors 1:896–903. https://doi.org/10.1021/acssensors.6b00266

    Article  CAS  Google Scholar 

  64. Herrasti Z, Martínez F, Baldrich E (2014) Carbon nanotube wiring for signal amplification of electrochemical magneto immunosensors: application to myeloperoxidase detection. Anal Bioanal Chem 406:5487–5493. https://doi.org/10.1007/s00216-014-7954-x

    Article  CAS  PubMed  Google Scholar 

  65. Centi S, Tombelli S, Puntoni M, Domenici C, Franek M, Palchetti I (2015) Detection of biomarkers for inflammatory diseases by an electrochemical immunoassay: the case of neopterin. Talanta 134:48–53. https://doi.org/10.1016/j.talanta.2014.10.053

    Article  CAS  PubMed  Google Scholar 

  66. Biscay J, González García MB, García AC (2015) Determination of Total PSA using magnetic beads and a re-usable screen printed carbon electrode Array. Electroanalysis 27:2773–2777. https://doi.org/10.1002/elan.201500351

    Article  CAS  Google Scholar 

  67. Zhu W, Saddam Khan M, Cao W, Sun X, Ma H, Zhang Y, Wei Q (2018) Ni(OH)2/NGQDs-based electrochemiluminescence immunosensor for prostate specific antigen detection by coupling resonance energy transfer with Fe3O4/MnO2 composites. Biosens Bioelectron 99:346–352. https://doi.org/10.1016/j.bios.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  68. Sharafeldin M, Bishop GW, Bhakta S, El-Sawy A, Suib SL, Rusling JF (2017) Fe3O4 nanoparticles on graphene oxide sheets for isolation and ultrasensitive amperometric detection of cancer biomarker proteins. Biosens Bioelectron 91:359–366. https://doi.org/10.1016/j.bios.2016.12.052

    Article  CAS  PubMed  Google Scholar 

  69. Jiao L, Mu Z, Miao L, Du W, Wei Q, Li H (2016) Enhanced amperometric immunoassay for the prostate specific antigen using Pt-cu hierarchical trigonal bipyramid nanoframes as a label. Microchim Acta 184:423–429. https://doi.org/10.1007/s00604-016-2023-0

    Article  CAS  Google Scholar 

  70. Sun XC, Lei C, Guo L, Zhou Y (2016) Sandwich immunoassay for the prostate specific antigen using a micro-fluxgate and magnetic bead labels. Microchim Acta 183:2385–2393. https://doi.org/10.1007/s00604-016-1889-1

    Article  CAS  Google Scholar 

  71. Li S, Luo J, Yang X, Wan Y, Liu C (2014) A novel immunosensor for squamous cell carcinoma antigen determination based on CdTe/carbon dots nanocomposite electrochemiluminescence resonance energy transfer. Sensors Actuators B Chem 197:43–49. https://doi.org/10.1016/j.snb.2014.02.066

    Article  CAS  Google Scholar 

  72. Gao J, Guo Z, Yu S, Su F, Ma H, Du B, Wei Q, Pang X (2015) A novel controlled release system-based homogeneous immunoassay protocol for SCCA using magnetic mesoporous Fe3O4 as a nanocontainer and aminated polystyrene microspheres as a molecular gate. Biosens Bioelectron 66:141–145. https://doi.org/10.1016/j.bios.2014.10.078

    Article  CAS  PubMed  Google Scholar 

  73. Wang Y, Wang Y, Pang X, Du B, Li H, Wu D, Wei Q (2015) Ultrasensitive sandwich-type electrochemical immunosensor based on dual signal amplification strategy using multifunctional graphene nanocomposites as labels for quantitative detection of tissue polypeptide antigen. Sensors Actuators B Chem 214:124–131. https://doi.org/10.1016/j.snb.2015.03.021

    Article  CAS  Google Scholar 

  74. Sánchez-Tirado E, Martínez-García G, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (2017) Electrochemical immunosensor for sensitive determination of transforming growth factor (TGF) - β1 in urine. Biosens Bioelectron 88:9–14. https://doi.org/10.1016/j.bios.2016.05.093

    Article  CAS  PubMed  Google Scholar 

  75. Global Health Estimates (2016) Deaths by cause, age, sex, By country and by region, 2000-2016. Geneva, World Health Organization; 2018. https://www.who.int/healthinfo/global_burden_disease/estimates/en/

  76. Agency for Healthcare Research and Quality. (2019) Total expenditures in millions by condition, United States, 1996-2015. Medical Expenditure Panel Survey Generated interactively: Jan 1, 2. https://meps.ahrq.gov/mepstrends/hc_cond/

  77. Wu L, Qu X (2015) Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 44:2963–2997. https://doi.org/10.1039/c4cs00370e

    Article  CAS  PubMed  Google Scholar 

  78. Topkaya SN, Azimzadeh M, Ozsoz M (2016) Electrochemical biosensors for Cancer biomarkers detection: recent advances and challenges. Electroanalysis 28:1402–1419. https://doi.org/10.1002/elan.201501174

    Article  CAS  Google Scholar 

  79. Garranzo-Asensio M, Guzman-Aranguez A, Povés C, Fernández-Aceñero MJ, Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Domínguez G, Frutos LS, Rodríguez N, Villalba M, Pingarrón JM, Campuzano S, Barderas R (2016) Toward liquid biopsy: determination of the humoral immune response in Cancer patients using HaloTag fusion protein-modified electrochemical bioplatforms. Anal Chem 88:12339–12345. https://doi.org/10.1021/acs.analchem.6b03526

    Article  CAS  PubMed  Google Scholar 

  80. Wang D, Li T, Gan N, Zhang H, Long N, Hu F, Cao Y, Jiang Q, Jiang S (2015) Electrochemical coding for multiplexed immunoassays of biomarkers based on bio-based polymer-nanotags. Electrochim Acta 163:238–245. https://doi.org/10.1016/j.electacta.2015.02.145

    Article  CAS  Google Scholar 

  81. Eletxigerra U, Martinez-Perdiguero J, Merino S, Villalonga R, Pingarrón JM, Campuzano S (2014) Amperometric magnetoimmunoassay for the direct detection of tumor necrosis factor alpha biomarker in human serum. Anal Chim Acta 838:37–44. https://doi.org/10.1016/j.aca.2014.05.047

    Article  CAS  PubMed  Google Scholar 

  82. Pedrero M, Manuel de Villena F, Muñoz-San Martín C, Campuzano S, Garranzo-Asensio M, Barderas R, Pingarrón J (2016) Disposable Amperometric Immunosensor for the determination of human P53 protein in cell lysates using magnetic micro-carriers. Biosensors 6:56. https://doi.org/10.3390/bios6040056

    Article  CAS  PubMed Central  Google Scholar 

  83. Valverde A, Povedano E, Montiel VR-V, Yáñez-Sedeño P, Garranzo-Asensio M, Barderas R, Campuzano S, Pingarrón JM (2018) Electrochemical immunosensor for IL-13 receptor α2 determination and discrimination of metastatic colon cancer cells. Biosens Bioelectron 117:766–772. https://doi.org/10.1016/j.bios.2018.07.017

    Article  CAS  PubMed  Google Scholar 

  84. Valverde A, Povedano E, Ruiz-Valdepeñas Montiel V, Yáñez-Sedeño P, Garranzo-Asensio M, Rodríguez N, Domínguez G, Barderas R, Campuzano S, Pingarrón JM (2018) Determination of Cadherin-17 in tumor tissues of different metastatic grade using a single incubation-step Amperometric Immunosensor. Anal Chem 90:11161–11167. https://doi.org/10.1021/acs.analchem.8b03506

    Article  CAS  PubMed  Google Scholar 

  85. Povedano E, Valverde A, Montiel VR-V, Pedrero M, Yáñez-Sedeño P, Barderas R, San Segundo-Acosta P, Peláez-García A, Mendiola M, Hardisson D, Campuzano S, Pingarrón JM (2018) Rapid electrochemical assessment of tumor suppressor gene methylations in raw human serum and tumor cells and tissues using Immunomagnetic beads and selective DNA hybridization. Angew Chem Int Ed 57:8194–8198. https://doi.org/10.1002/anie.201804339

    Article  CAS  Google Scholar 

  86. Wu D, Ma H, Zhang Y, Jia H, Yan T, Wei Q (2015) Corallite-like magnetic Fe3O4/MnO2/Pt nanocomposites as multiple signal amplifiers for the detection of carcinoembryonic antigen. ACS Appl Mat Interfaces 7:18786–18793. https://doi.org/10.1021/acsami.5b05443

    Article  CAS  Google Scholar 

  87. Wu Z, Guo W-J, Bai Y-Y, Zhang L, Hu J, Pang D-W, Zhang Z-L (2018) Digital single virus electrochemical enzyme-linked immunoassay for ultrasensitive H7N9 avian influenza virus counting. Anal Chem 90:1683–1690. https://doi.org/10.1021/acs.analchem.7b03281

    Article  CAS  PubMed  Google Scholar 

  88. Zhou C-H, Wu Z, Chen J-J, Xiong C, Chen Z, Pang D-W, Zhang Z-L (2015) Biometallization-based electrochemical Magnetoimmunosensing strategy for avian influenza a (H7N9) virus particle detection. Chem Asian J 10:1387–1393. https://doi.org/10.1002/asia.201500105

    Article  CAS  PubMed  Google Scholar 

  89. Liu C, Dong J, Ning S, Hou J, Waterhouse GIN, Cheng Z, Ai S (2018) An electrochemical immunosensor based on an etched zeolitic imidazolate framework for detection of avian leukosis virus subgroup J. Microchim Acta 185:423. https://doi.org/10.1007/s00604-018-2930-3

    Article  CAS  Google Scholar 

  90. Wang X, Wang L, Yang W, Ai S (2014) A multiple-promoted silver enhancement strategy in electrochemical detection of target virus. Sensors Actuators B Chem 194:276–282. https://doi.org/10.1016/j.snb.2013.12.068

    Article  CAS  Google Scholar 

  91. Hou Y-H, Wang J-J, Jiang Y-Z, Lv C, Xia L, Hong S-L, Lin M, Lin Y, Zhang Z-L, Pang D-W (2018) A colorimetric and electrochemical immunosensor for point-of-care detection of enterovirus 71. Biosens Bioelectron 99:186–192. https://doi.org/10.1016/j.bios.2017.07.035

    Article  CAS  PubMed  Google Scholar 

  92. Babamiri B, Hallaj R, Salimi A (2018) Ultrasensitive electrochemiluminescence immunosensor for determination of hepatitis B virus surface antigen using CdTe/CdS-PAMAM dendrimer as luminescent labels and Fe3O4 nanoparticles as magnetic beads. Sensors Actuators B Chem 254:551–560. https://doi.org/10.1016/j.snb.2017.07.016

    Article  CAS  Google Scholar 

  93. Sayhi M, Ouerghi O, Belgacem K, Arbi M, Tepeli Y, Ghram A, Anik Ü, Österlund L, Laouini D, Diouani MF (2018) Electrochemical detection of influenza virus H9N2 based on both immunomagnetic extraction and gold catalysis using an immobilization-free screen printed carbon microelectrode. Biosens Bioelectron 107:170–177. https://doi.org/10.1016/j.bios.2018.02.018

    Article  CAS  PubMed  Google Scholar 

  94. Wu Z, Hu J, Zeng T, Zhang Z-L, Chen J, Wong G, Qiu X, Liu W, Gao GF, Bi Y, Pang D-W (2017) Ultrasensitive Ebola virus detection based on electroluminescent Nanospheres and Immunomagnetic separation. Anal Chem 89:2039–2048. https://doi.org/10.1021/acs.analchem.6b04632

    Article  CAS  PubMed  Google Scholar 

  95. El Ichi S, Leon F, Vossier L, Marchandin H, Errachid A, Coste J, Jaffrezic-Renault N, Fournier-Wirth C (2014) Microconductometric immunosensor for label-free and sensitive detection of gram-negative bacteria. Biosens Bioelectron 54:378–384. https://doi.org/10.1016/j.bios.2013.11.016

    Article  CAS  PubMed  Google Scholar 

  96. Huang F, Zhang H, Wang L, Lai W, Lin J (2018) A sensitive biosensor using double-layer capillary based immunomagnetic separation and invertase-nanocluster based signal amplification for rapid detection of foodborne pathogen. Biosens Bioelectron 100:583–590. https://doi.org/10.1016/j.bios.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  97. Xu M, Wang R, Li Y (2016) Rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium in foods using an electrochemical immunosensor based on screen-printed interdigitated microelectrode and immunomagnetic separation. Talanta 148:200–208. https://doi.org/10.1016/j.talanta.2015.10.082

    Article  CAS  PubMed  Google Scholar 

  98. Hassan A-RHA-A, de la Escosura-Muñiz A, Merkoçi A (2015) Highly sensitive and rapid determination of Escherichia coli O157:H7 in minced beef and water using electrocatalytic gold nanoparticle tags. Biosens Bioelectron 67:511–515. https://doi.org/10.1016/j.bios.2014.09.019

    Article  CAS  PubMed  Google Scholar 

  99. Zhu F, Zhao G, Dou W (2018) Electrochemical sandwich immunoassay for Escherichia coli O157:H7 based on the use of magnetic nanoparticles and graphene functionalized with electrocatalytically active au/Pt core/shell nanoparticles. Microchim Acta 185:455. https://doi.org/10.1007/s00604-018-2984-2

    Article  CAS  Google Scholar 

  100. Chen Q, Lin J, Gan C, Wang Y, Wang D, Xiong Y, Lai W, Li Y, Wang M (2015) A sensitive impedance biosensor based on immunomagnetic separation and urease catalysis for rapid detection of Listeria monocytogenes using an immobilization-free interdigitated array microelectrode. Biosens Bioelectron 74:504–511. https://doi.org/10.1016/j.bios.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  101. Tufa LT, Oh S, Tran VT, Kim J, Jeong K-J, Park TJ, Kim H-J, Lee J (2018) Electrochemical immunosensor using nanotriplex of graphene quantum dots, Fe3O4, and ag nanoparticles for tuberculosis. Electrochim Acta 290:369–377. https://doi.org/10.1016/j.electacta.2018.09.108

    Article  CAS  Google Scholar 

  102. Ngoensawat U, Rijiravanich P, Surareungchai W, Somasundrum M (2017) Electrochemical immunoassay for Salmonella typhimurium based on an Immuno-magnetic redox label. Electroanalysis 30:146–153. https://doi.org/10.1002/elan.201700568

    Article  CAS  Google Scholar 

  103. Brandão D, Liébana S, Campoy S, Alegret S, Isabel Pividori M (2015) Immunomagnetic separation of Salmonella with tailored magnetic micro and nanocarriers. A comparative study. Talanta 143:198–204. https://doi.org/10.1016/j.talanta.2015.05.035

    Article  CAS  PubMed  Google Scholar 

  104. Freitas M, Viswanathan S, Nouws HPA, Oliveira MBPP, Delerue-Matos C (2014) Iron oxide/gold core/shell nanomagnetic probes and CdS biolabels for amplified electrochemical immunosensing of Salmonella typhimurium. Biosens Bioelectron 51:195–200. https://doi.org/10.1016/j.bios.2013.07.048

    Article  CAS  PubMed  Google Scholar 

  105. Nguyen P-D, Tran TB, Nguyen DTX, Min J (2014) Magnetic silica nanotube-assisted impedimetric immunosensor for the separation and label-free detection of Salmonella typhimurium. Sensors Actuators B Chem 197:314–320. https://doi.org/10.1016/j.snb.2014.02.089

    Article  CAS  Google Scholar 

  106. Kozitsina A, Svalova T, Malysheva N, Glazyrina Y, Matern A, Rusinov V (2016) Determination of Staphylococcus aureus B-1266 by an enzyme-free electrochemical Immunosensor incorporating magnetite nanoparticles. Anal Lett 50:924–935. https://doi.org/10.1080/00032719.2016.1204312

    Article  CAS  Google Scholar 

  107. Sha Y, Zhang X, Li W, Wu W, Wang S, Guo Z, Zhou J, Su X (2016) A label-free multi-functionalized graphene oxide based electrochemiluminscence immunosensor for ultrasensitive and rapid detection of Vibrio parahaemolyticus in seawater and seafood. Talanta 147:220–225. https://doi.org/10.1016/j.talanta.2015.09.058

    Article  CAS  PubMed  Google Scholar 

  108. Wang D, Chen Q, Huo H, Bai S, Cai G, Lai W, Lin J (2017) Efficient separation and quantitative detection of Listeria monocytogenes based on screen-printed interdigitated electrode, urease and magnetic nanoparticles. Food Control 73:555–561. https://doi.org/10.1016/j.foodcont.2016.09.003

    Article  CAS  Google Scholar 

  109. Wang Y, Alocilja EC (2015) Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens. J Biol Eng 9. https://doi.org/10.1186/s13036-015-0014-z

  110. Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta 183:2063–2083. https://doi.org/10.1007/s00604-016-1858-8

    Article  CAS  Google Scholar 

  111. Lin Y, Zhou Q, Tang D, Niessner R, Knopp D (2017) Signal-on Photoelectrochemical immunoassay for aflatoxin B1 based on enzymatic product-etching MnO2 Nanosheets for dissociation of carbon dots. Anal Chem 89:5637–5645. https://doi.org/10.1021/acs.analchem.7b00942

    Article  CAS  PubMed  Google Scholar 

  112. Liu Y, Yan T, Li Y, Cao W, Pang X, Wu D, Wei Q (2015) A simple label-free photoelectrochemical immunosensor for highly sensitive detection of aflatoxin B1 based on CdS–Fe3O4 magnetic nanocomposites. RSC Adv 5:19581–19586. https://doi.org/10.1039/c4ra15918g

    Article  CAS  Google Scholar 

  113. Montiel VRV, Campuzano S, Pellicanò A, Torrente-Rodríguez RM, Reviejo AJ, Cosio MS, Pingarrón JM (2015) Sensitive and selective magnetoimmunosensing platform for determination of the food allergen Ara h 1. Anal Chim Acta 880:52–59. https://doi.org/10.1016/j.aca.2015.04.041

    Article  CAS  Google Scholar 

  114. Montiel VRV, Torrente-Rodríguez R, Campuzano S, Pellicanò A, Reviejo Á, Cosio M, Pingarrón J (2016) Simultaneous determination of the Main Peanut allergens in foods using disposable Amperometric magnetic beads-based Immunosensing platforms. Chemosensors 4:11. https://doi.org/10.3390/chemosensors4030011

    Article  CAS  Google Scholar 

  115. Montiel VRV, Pellicanò A, Campuzano S, Torrente-Rodríguez RM, Reviejo ÁJ, Cosio MS, Pingarrón JM (2016) Electrochemical detection of peanuts at trace levels in foods using a magnetoimmunosensor for the allergenic protein Ara h 2. Sensors Actuators B Chem 236:825–833. https://doi.org/10.1016/j.snb.2016.01.123

    Article  CAS  Google Scholar 

  116. Medina-Sánchez M, Mayorga-Martinez CC, Watanabe T, Ivandini TA, Honda Y, Pino F, Nakata K, Fujishima A, Einaga Y, Merkoçi A (2016) Microfluidic platform for environmental contaminants sensing and degradation based on boron-doped diamond electrodes. Biosens Bioelectron 75:365–374. https://doi.org/10.1016/j.bios.2015.08.058

    Article  CAS  PubMed  Google Scholar 

  117. González-Techera A, Zon MA, Molina PG, Fernández H, González-Sapienza G, Arévalo FJ (2015) Development of a highly sensitive noncompetitive electrochemical immunosensor for the detection of atrazine by phage anti-immunocomplex assay. Biosens Bioelectron 64:650–656. https://doi.org/10.1016/j.bios.2014.09.046

    Article  CAS  PubMed  Google Scholar 

  118. Leonardo S, Rambla-Alegre M, Samdal IA, Miles CO, Kilcoyne J, Diogène J, O’Sullivan CK, Campàs M (2017) Immunorecognition magnetic supports for the development of an electrochemical immunoassay for azaspiracid detection in mussels. Biosens Bioelectron 92:200–206. https://doi.org/10.1016/j.bios.2017.02.015

    Article  CAS  PubMed  Google Scholar 

  119. Pinacho D, Sánchez-Baeza F, Pividori M-I, Marco M-P (2014) Electrochemical detection of fluoroquinolone antibiotics in Milk using a magneto Immunosensor. Sensors 14:15965–15980. https://doi.org/10.3390/s140915965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li F, Zhang R, Kang H, Hu Y, Liu Y, Zhu J (2017) Facile and sensitive detection of clenbuterol in pork using a personal glucose meter. Anal Methods 9:6507–6512. https://doi.org/10.1039/c7ay01826f

    Article  CAS  Google Scholar 

  121. Zhang S, Du B, Li H, Xin X, Ma H, Wu D, Yan L, Wei Q (2014) Metal ions-based immunosensor for simultaneous determination of estradiol and diethylstilbestrol. Biosens Bioelectron 52:225–231. https://doi.org/10.1016/j.bios.2013.08.042

    Article  CAS  PubMed  Google Scholar 

  122. Wei J, Qileng A, Yan Y, Lei H, Zhang S, Liu W, Liu Y (2017) A novel visible-light driven photoelectrochemical immunosensor based on multi-amplification strategy for ultrasensitive detection of microcystin-LR. Anal Chim Acta 994:82–91. https://doi.org/10.1016/j.aca.2017.09.035

    Article  CAS  PubMed  Google Scholar 

  123. Gan C, Ling L, He Z, Lei H, Liu Y (2016) In-situ assembly of biocompatible core–shell hierarchical nanostructures sensitized immunosensor for microcystin-LR detection. Biosens Bioelectron 78:381–389. https://doi.org/10.1016/j.bios.2015.11.072

    Article  CAS  PubMed  Google Scholar 

  124. Jodra A, Hervás M, López MÁ, Escarpa A (2015) Disposable electrochemical magneto immunosensor for simultaneous simplified calibration and determination of Ochratoxin a in coffee samples. Sensors Actuators B Chem 221:777–783. https://doi.org/10.1016/j.snb.2015.07.007

    Article  CAS  Google Scholar 

  125. Benedé S, Montiel VRV, Povedano E, Villalba M, Mata L, Galán-Malo P, Torrente-Rodríguez RM, Vargas E, Reviejo AJ, Campuzano S, Pingarrón JM (2018) Fast amperometric immunoplatform for ovomucoid traces determination in fresh and baked foods. Sensors Actuators B Chem 265:421–428. https://doi.org/10.1016/j.snb.2018.03.075

    Article  CAS  Google Scholar 

  126. Valera E, García-Febrero R, Pividori I, Sánchez-Baeza F, Marco MP (2014) Coulombimetric immunosensor for paraquat based on electrochemical nanoprobes. Sensors Actuators B Chem 194:353–360. https://doi.org/10.1016/j.snb.2013.12.029

    Article  CAS  Google Scholar 

  127. Zhang Y, Fan Y, Wu J, Wang X, Liu Y (2016) An Amperometric Immunosensor based on an ionic liquid and single-walled carbon nanotube composite electrode for detection of Tetrodotoxin in pufferfish. J Agric Food Chem 64:6888–6894. https://doi.org/10.1021/acs.jafc.6b02426

    Article  CAS  PubMed  Google Scholar 

  128. Shang F, Liu Y, Wang S, Hu Y, Guo Z (2017) Electrochemiluminescence Immunosensor based on functionalized graphene/Fe3O4 -au magnetic capture probes for ultrasensitive detection of Tetrodotoxin. Electroanalysis 29:2098–2105. https://doi.org/10.1002/elan.201700223

    Article  CAS  Google Scholar 

  129. Lin H-Y, Huang C-H, Park J, Pathania D, Castro CM, Fasano A, Weissleder R, Lee H (2017) Integrated magneto-chemical sensor for on-site food allergen detection. ACS Nano 11:10062–10069. https://doi.org/10.1021/acsnano.7b04318

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Masaryk University within the project Support of biochemical research in 2018 (MUNI/A/1100/2017) and by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Skládal.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastucha, M., Farka, Z., Lacina, K. et al. Magnetic nanoparticles for smart electrochemical immunoassays: a review on recent developments. Microchim Acta 186, 312 (2019). https://doi.org/10.1007/s00604-019-3410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3410-0

Keywords

Navigation