Skip to main content
Log in

On Minkowski type question mark functions associated with even or odd continued fractions

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We study analogues of Minkowski’s question mark function ?(x) related to continued fractions with even or with odd partial quotients. We prove that these functions are Hölder continuous with precise exponents, and that they linearize the appropriate versions of the Gauss and Farey maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aaronson, J., Denker, M.: The Poincaré series of \({\mathbb{C}} \setminus {\mathbb{Z}}\). Ergod. Theory Dyn. Syst. 19, 1–20 (1999)

    Article  MATH  Google Scholar 

  2. Alkauskas, G.: Integral transforms of the Minkowski question mark function. Ph.D. thesis, University of Nottingham (2008)

  3. Beaver, O., Garrity, T.: A two-dimensional Minkowski \(?(x)\) function. J. Number Theory 107, 105–134 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonnano, C., Isola, S.: Orderings of the rationals and dynamical systems. Colloq. Math. 116, 165–189 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Denjoy, A.: Sur une fonction réele de Minkowski. J. Math. Pure Appl. 17, 106–151 (1938)

    Google Scholar 

  6. Dilcher, K., Stolarsky, K.: A polynomial analogue to the Stern sequence. Int. J. Number Theory 3, 85–103 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dresse, Z., Van Assche, W.: Orthogonal polynomials for Minkowski’s question mark function. J. Comput. Appl. Math. 284, 171–183 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dushistova, A., Kan, I.D., Moshchevitin, N.G.: Differentiability of the Minkowski question mark function. J. Math. Anal. Appl. 401, 774–794 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grabner, P.J., Kirschenhofer, P., Tichy, R.F.: Combinatorial and arithmetical properties of linear numeration systems. Combinatorica 22, 245–267 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jordan, T., Sahlsten, T.: Fourier transforms of Gibbs measures for the Gauss map. Math. Ann. 364, 983–1023 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kesseböhmer, M., Stratmann, B.O.: Fractal analysis for sets of non-differentiability of Minkowski’s question mark function. J. Number Theory 128, 2663–2686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kesseböhmer, M., Munday, S., Stratmann, B.O.: Infinite Ergodic Theory of Numbers. De Gruyter Graduate, Berlin (2016)

    MATH  Google Scholar 

  13. Kinney, J.R.: Note on a singular function of Minkowski. Proc. Am. Math. Soc. 11, 788–789 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kraaikamp, C.: A new class of continued fraction expansions. Acta Arith. 57, 1–39 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kraaikamp, C., Nakada, H.: On normal numbers for continued fractions. Ergod. Theory Dyn. Syst. 20, 1405–1421 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Masarotto, V.: Metric and arithmetic properties of a new class of continued fraction expansions. Master Thesis, Universitá di Padova and Leiden University (2008/2009)

  17. Minkowski, H.: Zur Geometrie der Zahlen, Verhandlungen des Internationalen Mathematiker-Kongresous, Heildelberg, pp. 164–173 1904 (see also Gesammelte Abhandlungen 2, B. G. Teubner, Leipzig und Berlin 1911, pp. 43–52)

  18. Northshield, S.: An analogue of Stern’s sequence for \(\mathbb{Z}[\sqrt{2}\)]. J. Integer Seq. 18(11) (2015). Article 15.11.6

  19. OEIS: The on-line encyclopedia of integer sequences. https://oeis.org/. Accessed 9 June 2018

  20. Panti, G.: Multidimensional continued fractions and a Minkowski function. Mon. Math. 154, 247–264 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Paradis, J., Viader, P., Bibiloni, L.: The derivative of Minkowski’s \(?(x)\) function. J. Math. Anal. Appl. 253, 107–125 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rieger, G. J.: On the metrical theory of continued fractions with odd partial quotients. In: Colloquia Mathematica Societatis János Bolyai 34, Topics in Classical Number Theory, Budapest, pp. 1371–1418 (1981)

  23. Romik, D.: The dynamics of Pythagorean triples. Trans. Am. Math. Soc. 360, 6045–6064 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Salem, R.: On some singular monotonic functions which are strictly increasing. Trans. Am. Math. Soc. 53, 427–439 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schweiger, F.: Continued fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universität Salzburg 4, 59–70 (1982)

    Google Scholar 

  26. Schweiger, F.: On the approximation by continued fractions with odd and even partial quotients. Arbeitsberichte Math. Institut Universität Salzburg 1–2, 105–114 (1984)

    Google Scholar 

  27. Zhabitskaya, E.N.: Continued fractions with odd partial quotients. Int. J. Number Theory 8, 1541–1556 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the referees for their valuable input that contributed to a number of clarifications and improved the presentation of the paper. Florin P. Boca would like to acknowledge partial support during his visits to IMAR Bucharest by a grant from Romanian Ministry of Research and Innovation, CNCS-UEFISCDI, Project PN-III-P4-ID-PCE-2016-0823, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florin P. Boca.

Additional information

Communicated by A. Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boca, F.P., Linden, C. On Minkowski type question mark functions associated with even or odd continued fractions. Monatsh Math 187, 35–57 (2018). https://doi.org/10.1007/s00605-018-1205-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-018-1205-8

Keywords

Mathematics Subject Classification

Navigation