Skip to main content
Log in

Solution-processed copper zinc tin sulfide thin films from metal xanthate precursors

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The quaternary semiconductor copper zinc tin sulfide (Cu2ZnSnS4, CZTS) is one of the most promising alternatives to Ga and In based semiconductors for thin film solar cells. It consists of non-toxic, cheap, and abundant elements and displays highly beneficial optical as well as electronic properties for photovoltaic applications. In this work we present a solution-based preparation method for CZTS thin films using exclusively metal xanthates as precursor materials. The introduction of branched alkyl side chains (3,3-dimethyl-2-butyl) into the metal xanthates leads to highly soluble precursors with low decomposition temperatures. In addition, these precursors already contain the sulfur needed for the formation of the metal sulfide. Therefore, no external sulfur source such as thiourea, thioacetamide, or elemental sulfur is necessary. For the preparation of CZTS thin films, solutions containing these metal xanthates were used to coat precursor layers, which were subsequently annealed at temperatures between 180 and 350 °C. Depending on the temperature, nanocrystalline films with primary crystallite sizes ranging from 3 nm (180 °C) up to approximately 43 nm (350 °C) were obtained. A combined X-ray diffraction, Raman spectroscopy, and TEM-EDX study showed that a precursor solution with a Cu/(Zn + Sn) ratio of 0.6 has to be used to obtain CZTS films, which show high optical absorption (>2 × 105 cm−1) and an optical band gap of approximately 1.31 eV. First experiments concerning photovoltaic activity of the solution processed CZTS layers were carried out.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M (2011) Prog Photovolt 19:894

    Article  CAS  Google Scholar 

  2. Peter LM (2011) Phil Trans R Soc A 369:1840

    Article  CAS  Google Scholar 

  3. Scragg JJ, Dale PJ, Peter LM, Zoppi G, Forbes I (2008) Phys Status Solidi B 245:1772

    Article  CAS  Google Scholar 

  4. Todorov TK, Kita M, Carda J, Escribano P (2009) Thin Solid Films 517:2541

    Article  CAS  Google Scholar 

  5. Mitzi DB, Gunawan O, Todorov TK, Wang K, Guha S (2011) Sol Energy Mater Sol Cells 95:1421

    Article  CAS  Google Scholar 

  6. Tanaka K, Fukui Y, Moritake N, Uchiki H (2011) Sol Energy Mater Sol Cells 95:838

    Article  CAS  Google Scholar 

  7. Dai P, Shen X, Lin Z, Feng Z, Xu H, Zhan J (2010) Chem Commun 46:5749

    Article  CAS  Google Scholar 

  8. Kishore KYB, Suresh BG, Uday BP, Sundara RV (2009) Sol Energy Mater Sol Cells 93:1230

    Article  Google Scholar 

  9. Todorov TK, Reuter KB, Mitzi DB (2010) Adv Mater 22:E156

    Article  CAS  Google Scholar 

  10. Barkhouse DAR, Gunawan O, Gokmen T, Todorov TK, Mitzi DB (2012) Prog Photovolt 20:6

    Article  CAS  Google Scholar 

  11. Araki H, Mikaduki A, Kubo Y, Sato T, Jimbo K, Maw W, Katagiri H, Yamazaki M, Oishi K, Takeuchi A (2008) Thin Solid Films 517:1457

    Article  CAS  Google Scholar 

  12. Katagiri H, Sasaguchi N, Hando S, Hoshino S, Ohashi J, Yokota T (1997) Sol Energy Mater Sol Cells 49:407

    Article  CAS  Google Scholar 

  13. Tanaka T, Kawasaki D, Nishio M, Guo Q, Ogawa H (2006) Phys Status Solidi C 3:2844

    Article  CAS  Google Scholar 

  14. Weber A, Krauth H, Perlt S, Schubert B, Kötschau I, Schorr S, Schock HW (2009) Thin Solid Films 517:2524

    Article  CAS  Google Scholar 

  15. Oishi K, Saito G, Ebina K, Nagahashi M, Jimbo K, Maw W, Katagiri H, Yamazaki M, Araki H, Takeuchi A (2008) Thin Solid Films 517:1449

    Article  CAS  Google Scholar 

  16. Schubert BA, Marsen B, Cinque S, Unold T, Klenk R, Schorr S, Schock HW (2011) Prog Photovolt 19:93

    Article  CAS  Google Scholar 

  17. Yoo H, Kim J (2010) Thin Solid Films 518:6567

    Article  CAS  Google Scholar 

  18. Jimbo K, Kimura R, Kamimura T, Yamada S, Maw W, Araki H, Oishi K, Katagiri H (2007) Thin Solid Films 515:5997

    Article  CAS  Google Scholar 

  19. Tanaka T, Nagatomo T, Kawasaki D, Nishio M, Guo Q, Wakahara A, Yoshida A, Ogawa H (2005) J Phys Chem Solids 66:1978

    Article  CAS  Google Scholar 

  20. Kurihara M, Berg D, Fischer J, Siebentritt S, Dale PJ (2009) Phys Status Solidi C 6:1241

    Article  CAS  Google Scholar 

  21. Pawar SM, Pawar BS, Moholkar AV, Choi DS, Yun HJ, Moon JH, Kolekar SS, Kim JH (2010) Electrochim Acta 55:4057

    Article  CAS  Google Scholar 

  22. Araki H, Kubo Y, Jimbo K, Maw WS, Katagiri H, Yamazaki M, Oishi K, Takeuchi A (2009) Phys Status Solidi C 6:1266

    Article  CAS  Google Scholar 

  23. Moriya K, Watabe J, Tanaka K, Uchiki H (2006) Phys Status Solidi C 3:2848

    Article  CAS  Google Scholar 

  24. Tanaka K, Oonuki M, Moritake N, Uchiki H (2009) Sol Energy Mater Sol Cells 93:583

    Article  CAS  Google Scholar 

  25. Yeh MY, Lee CC, Wuu DS (2009) J Sol Gel Sci Technol 52:65

    Article  CAS  Google Scholar 

  26. Fischereder A, Rath T, Haas W, Amenitsch H, Albering J, Meischler D, Larissegger S, Edler M, Saf R, Hofer F, Trimmel G (2010) Chem Mater 22:3399

    Article  CAS  Google Scholar 

  27. Prabhakar T, Jampana N (2011) Sol Energy Mater Sol Cells 95:1001

    Article  CAS  Google Scholar 

  28. Rajeshmon VG, Kartha CS, Vijayakumar KP, Sanjeeviraja C, Abe T, Kashiwaba Y (2011) Sol Energy 85:249

    Article  CAS  Google Scholar 

  29. Yoo H, Kim J (2011) Sol Energy Mater Sol Cells 95:239

    Article  CAS  Google Scholar 

  30. Madarász J, Bombicz P, Okuya M, Kaneko S (2001) Solid State Ionics 141–142:439

    Article  Google Scholar 

  31. Kumar YBK, Bhaskar PU, Babu GS, Raja VS (2010) Phys Status Solidi A 207:149

    Article  CAS  Google Scholar 

  32. Guo Q, Ford GM, Yang WC, Walker BC, Stach EA, Hillhouse HW, Agrawal R (2010) J Am Chem Soc 132:17384

    Article  CAS  Google Scholar 

  33. Guo Q, Hillhouse HW, Agrawal R (2009) J Am Chem Soc 131:11672

    Article  CAS  Google Scholar 

  34. Steinhagen C, Panthani MG, Akhavan V, Goodfellow B, Koo B, Korgel BA (2009) J Am Chem Soc 131:12554

    Article  CAS  Google Scholar 

  35. Timmo K, Altosaar M, Raudoja J, Muska K, Pilvet M, Kauk M, Varema T, Danilson M, Volobujeva O, Mellikov E (2010) Sol Energy Mater Sol Cells 94:1889

    Article  CAS  Google Scholar 

  36. Mellikov E, Meissner D, Altosaar M, Kauk M, Krustok J, Öpik A, Volobujeva O, Iljina J, Timmo K, Klavina I, Raudoja J, Grossberg M, Varema T, Muska K, Ganchev M, Bereznev S, Danilson M (2011) Adv Mater Res 222:8

    Article  CAS  Google Scholar 

  37. Mellikov E, Meissner D, Varema T, Altosaar M, Kauk M, Volobujeva O, Raudoja J, Timmo K, Danilson M (2009) Sol Energy Mater Sol Cells 93:65

    Article  CAS  Google Scholar 

  38. Pradhan N, Katz B, Efrima S (2003) J Phys Chem 107:13843

    CAS  Google Scholar 

  39. Castro JR, Molloy KC, Liu Y, Lai CS, Dong Z, White TJ, Tiekink ERT (2008) J Mater Chem 18:5399

    Article  CAS  Google Scholar 

  40. Dutta DP, Sharma G (2006) Mater Lett 60:2395

    Article  CAS  Google Scholar 

  41. Liu Y, Ge M, Yue Y, Sun Y, Wu Y, Chen X, Dai N (2011) Phys Status Solidi RRL 5:113

    Article  CAS  Google Scholar 

  42. Leventis HC, King SP, Sudlow A, Hill MS, Molloy KC, Haque SA (2010) Nano Lett 10:1253

    Article  CAS  Google Scholar 

  43. Rath T, Edler M, Haas W, Fischereder A, Moscher S, Schenk A, Trattnig R, Sezen M, Mauthner G, Pein A, Meischler D, Bartl K, Saf R, Bansal N, Haque SA, Hofer F, List EJW, Trimmel G (2011) Adv Energy Mater 1:1046

    Article  CAS  Google Scholar 

  44. Arar M, Pein A, Haas W, Hofer F, Norrman K, Krebs FC, Rath T, Trimmel G (2012) J Phys Chem C 116:19191

    Article  CAS  Google Scholar 

  45. Edler M, Rath T, Schenk A, Fischereder A, Haas W, Edler M, Chernev B, Kunert B, Hofer F, Resel R, Trimmel G (2012) Mater Chem Phys 136:582

    Article  CAS  Google Scholar 

  46. Barreca D, Tondello E, Lydon D, Spalding TR, Fabrizio M (2003) Chem Vap Deposition 9:93

    Article  CAS  Google Scholar 

  47. Nair PS, Radhakrishnan T, Revaprasadu N, Kolawole G, O′Brien P (2002) J Mater Chem 12:2722

    Article  CAS  Google Scholar 

  48. Barreca D, Gasparotto A, Maragno C, Seraglia R, Tondello E, Venzo A, Krishnan V, Bertagnolli H (2005) Appl Organomet Chem 19:59

    Article  CAS  Google Scholar 

  49. Xu K, Ding W (2008) Mater Lett 62:4437

    Article  CAS  Google Scholar 

  50. Whitmore WF, Lieber E (1935) Ind Eng Chem 127

  51. González-Roura A, Casas J, Llebaria A (2002) Lipids 37:401

    Article  Google Scholar 

  52. Yordanov N, Gancheva V, Mladenova B, Grampp G (2003) Inorg Chem Commun 6:54

    Article  CAS  Google Scholar 

  53. Gable RW, Raston CL, Rowbottom GL, White AH, Winter G (1981) Dalton Trans 1392

  54. Raston C, Tennant P, White A, Winter G (1978) Aust J Chem 31:1493

    Article  CAS  Google Scholar 

  55. Casey A, Vecchio M (1987) Inorg Chim Acta 131:191

    Article  CAS  Google Scholar 

  56. Barone G, Chaplin T, Hibbert TG, Kana AT, Mahon MF, Molloy KC, Worsley ID, Parkin IP, Price LS (2002) Dalton Trans 1085

  57. Weber A, Mainz R, Unold T, Schorr S, Schock HW (2009) Phys Status Solidi C 6:1245

    Article  CAS  Google Scholar 

  58. Hu H, Liu Z, Yang B, Chen X, Qian Y (2005) J Cryst Growth 284:226

    Article  CAS  Google Scholar 

  59. Di Benedetto F, Borrini D, Caneschi A, Fornaciai G, Innocenti M, Lavacchi A, Massa CA, Montegrossi G, Oberhauser W, Pardi LA, Romanelli M (2011) Phys Chem Miner 38:483

    Article  Google Scholar 

  60. Fernandes PA, Salomé PMP, da Cunha AF (2011) J Alloys Compd 509:7600

    Article  CAS  Google Scholar 

  61. Ge J, Wu Y, Zhang C, Zuo S, Jiang J, Ma J, Yang P, Chu J (2012) Appl Surf Sci 258:7250

    Article  CAS  Google Scholar 

  62. Cliff G, Lorimer GW (1975) J Microsc 103:203

    Article  Google Scholar 

  63. Platzer-Björkman C, Scragg JJ, Flammersberger H, Kubart T, Edoff M (2011) Sol Energy Mater Sol Cells 98:110

    Google Scholar 

  64. Taunier S, Sicx-Kurdi J, Grand P, Chomont A, Ramdani O, Parissi L, Panheleux P, Naghavi N, Hubert C, Benfarah M (2005) Thin Solid Films 480–481:526

    Article  Google Scholar 

  65. Kemell M, Ritala M, Leskelä M (2005) Crit Rev Solid State Mater Sci 30:1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Christian Doppler Research Association (CDG), the Federal Ministry of Economy, Family and Youth of Austria, and Isovoltaic AG for financial support. Part of the research work was performed in project IV-1.02 of the Polymer Competence Center Leoben GmbH (PCCL, Austria) within the framework of the COMET program of the Austrian Federal Ministry of Transport, Innovation and Technology and the Federal Ministry of Economy, Family and Youth with contributions by academic and commercial partners. The PCCL is funded by the Austrian Government and the State Governments of Styria and Upper Austria. Additional support by NAWI Graz is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Rath or Gregor Trimmel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischereder, A., Schenk, A., Rath, T. et al. Solution-processed copper zinc tin sulfide thin films from metal xanthate precursors. Monatsh Chem 144, 273–283 (2013). https://doi.org/10.1007/s00706-012-0882-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-012-0882-6

Keywords

Navigation