Skip to main content
Log in

Kinetic compensation effect: discounting the distortion provoked by accidental experimental errors in the isokinetic temperature value

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Random experimental errors are known to provoke the appearance of false isokinetic enthalpy–entropy relationships under some circumstances. In this contribution, it is shown that the observation of a false error-caused isokinetic plot, with a slope close to the mean working temperature (Tm), does not necessarily preclude the occurrence of a real isokinetic temperature (Tik) that might be quite different from Tm, for that particular homologous reaction series. However, since accidental errors cause a shift in the value of parameter Tik toward that of Tm, different numerical simulation methods have been tried to discount this effect and so obtain the most probable (extrapolated) value of Tik. The method leading to the best results was that of shifting the maximum probability curve for each reaction series until it matched the experimental point (defined by both the Tik value and the activation enthalpy mean fitting error). Finally, the applicability of this method has been checked out for 17 reaction families selected from chemical bibliographic sources. According to the results found in this study, when the experimental isokinetic temperature is higher than the mean working temperature (Tik,exp > Tm) the most probable value should be looked for in the high temperature range (Tik,sim > Tik,exp), and when Tik,exp < Tm in the low temperature range (Tik,sim < Tik,exp). Moreover, the best parameter to predict the relative error that must be allowed to Tik,sim is the correlation coefficient of the experimental compensation plot.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Waring CE, Becher P (1947) J Chem Phys 15:488

    CAS  Google Scholar 

  2. Rosenberg B, Bhowmik BB, Harder HC, Postow E (1968) J Chem Phys 49:4108

    CAS  Google Scholar 

  3. Crandall RS (1991) Phys Rev B 43:4057

    CAS  Google Scholar 

  4. Davidovits P, Jayne JT, Duan SX, Worsnop DR, Zahniser MS, Kolb CE (1991) J Phys Chem 95:6337

    CAS  Google Scholar 

  5. Nathanson GM, Davidovits P, Worsnop DR, Kolb CE (1996) J Phys Chem 100:13007

    CAS  Google Scholar 

  6. Bouxin B, Maier K, Hackner A, Mueller G, Shao F, Prades JD, Hernandez-Ramirez F, Morante JR (2013) Sens Actuators B Chem 182:25

    CAS  Google Scholar 

  7. Crine JP (2013) Monatsh Chem 144:11

    CAS  Google Scholar 

  8. Engstrom O (2013) Monatsh Chem 144:73

    CAS  Google Scholar 

  9. Shimakawa K, Aniya M (2013) Monatsh Chem 144:67

    CAS  Google Scholar 

  10. Ashraf IM, El-Zahhar AA (2018) Results Phys 11:842

    Google Scholar 

  11. He Q, Xu X, Gu Y, Cheng X, Xu J, Jiang Y (2018) ACS Appl Nano Mater 1:6959

    CAS  Google Scholar 

  12. Kumar A, Mehta N (2018) J Phys Chem Solids 121:49

    CAS  Google Scholar 

  13. Srivastava A, Sharma SD, Mehta N (2018) Ceram Int 44:20827

    CAS  Google Scholar 

  14. Biswas D, Singh LS, Das AS, Bhattacharya S (2019) J Non-Cryst Solids 510:101

    CAS  Google Scholar 

  15. Sagotra AK, Chu D, Cazorla C (2019) Phys Rev Mater 3:035405

    CAS  Google Scholar 

  16. Sedivy L, Belas E, Grill R, Musiienko A, Vasylchenko I (2019) J Alloys Compd 788:897

    CAS  Google Scholar 

  17. Wang LF, Sun B, Liu HF, Lin DY, Song HF (2019) J Nucl Mater 526:151762

    CAS  Google Scholar 

  18. Linert W (1987) Chem Phys 114:457

    CAS  Google Scholar 

  19. Sugihara G, Shigematsu DS, Nagadome S, Lee S, Sasaki Y, Igimi H (2000) Langmuir 16:1825

    CAS  Google Scholar 

  20. Freyer MW, Buscaglia R, Hollingsworth A, Ramos J, Blynn M, Pratt R, Wilson WD, Lewis EA (2007) Biophys J 92:2516

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Movileanu L, Schiff EA (2013) Monatsh Chem 144:59

    CAS  PubMed  Google Scholar 

  22. Koudrtiavtsev AB, Linert W (2013) Monatsh Chem 144:29

    CAS  Google Scholar 

  23. Pinheiro LMV, Calado ART, Reis JCR (2004) Org Biomol Chem 2:1330

    CAS  PubMed  Google Scholar 

  24. Govardan D, Bhooshan M, Saiprakash PK, Rajanna KC (2019) SN Appl Sci 1:1004

    Google Scholar 

  25. Lyon RE (2019) J Phys Chem A 123:2462

    CAS  PubMed  Google Scholar 

  26. Shimoyama D, Haino T (2019) J Org Chem 84:13483

    CAS  PubMed  Google Scholar 

  27. Liu L, Guo QX (2001) Chem Rev 101:673

    CAS  PubMed  Google Scholar 

  28. Keane MA, Larsson R (2009) Catal Lett 129:93

    CAS  Google Scholar 

  29. Larsson R (2013) Monatsh Chem 144:21

    CAS  Google Scholar 

  30. Larsson R (2015) Molecules 20:2529

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Larsson R (2018) Catalysts 8:97

    Google Scholar 

  32. Yelon A, Movaghar B, Crandall RS (2006) Rep Prog Phys 69:1145

    CAS  Google Scholar 

  33. Yelon A, Sacher E, Linert W (2011) Catal Lett 141:954

    CAS  Google Scholar 

  34. Abdel-Wahav F, Yelon A (2013) J Appl Phys 114:023707

    Google Scholar 

  35. Yelon A (2017) MRS Adv 2:425

    CAS  Google Scholar 

  36. Barrie PJ (2012) Phys Chem Chem Phys 14:318

    CAS  PubMed  Google Scholar 

  37. Perez-Benito JF (2013) Monatsh Chem 144:49

    CAS  Google Scholar 

  38. Barrie PJ (2012) Phys Chem Chem Phys 14:327

    CAS  PubMed  Google Scholar 

  39. McBane GC (1998) J Chem Educ 75:919

    CAS  Google Scholar 

  40. Sharp K (2001) Prot Sci 10:661

    CAS  Google Scholar 

  41. Cornish-Bowden A (2002) J Biosci 27:121

    PubMed  Google Scholar 

  42. Starikov EB, Norden B (2007) J Phys Chem B 111:14431

    CAS  PubMed  Google Scholar 

  43. Krug RR, Hunter WG, Grieger RA (1976) Nature 261:566

    CAS  Google Scholar 

  44. Krug RR, Hunter WG, Grieger RA (1976) J Phys Chem 80:2335

    CAS  Google Scholar 

  45. Krug RR, Hunter WG, Grieger RA (1976) J Phys Chem 80:2341

    CAS  Google Scholar 

  46. Koudrtiavtsev AB, Linert W (2013) Match Commun Math Comput Chem 70:7

    Google Scholar 

  47. Perez-Benito JF, Mulero-Raichs M (2016) J Phys Chem A 120:7598

    CAS  PubMed  Google Scholar 

  48. Perez-Benito JF (1987) Chem Scr 27:433

    CAS  Google Scholar 

  49. Perez-Benito JF, Lee DG (1987) J Org Chem 52:3239

    CAS  Google Scholar 

  50. McArdle JV, Coyle CL, Gray HB, Yoneda GS, Holwerda RA (1977) J Am Chem Soc 99:2483

    CAS  PubMed  Google Scholar 

  51. Wiberg KB, Geer RD (1966) J Am Chem Soc 88:5827

    CAS  Google Scholar 

  52. Bedell SA, Nakon R (1977) Inorg Chem 16:3055

    CAS  Google Scholar 

  53. Reid LS, Mauk AG (1982) J Am Chem Soc 104:841

    CAS  Google Scholar 

  54. Cafferata LFR, Eyler GN, Svartman EL, Cañizo AI, Alvarez E (1991) J Org Chem 56:411

    CAS  Google Scholar 

  55. Wang WD, Bakac A, Espenson JH (1993) Inorg Chem 32:5034

    CAS  Google Scholar 

  56. Shi T, Elding LI (1997) Inorg Chem 36:528

    CAS  Google Scholar 

  57. Kryatov SV, Chavez FA, Reynolds AM, Rybak-Akimova EV, Que L, Tolman WB (2004) Inorg Chem 43:2141

    CAS  PubMed  Google Scholar 

  58. Jensen MP, Payeras AM, Fiedler AT (2007) Inorg Chem 46:2398

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Loalza A, Armstrong KM, Baker BM, Abu-Omar MM (2008) Inorg Chem 47:4877

    Google Scholar 

  60. Bernhardt PV, Gonzalvez MA, Martinez M (2017) Inorg Chem 56:14284

    CAS  PubMed  Google Scholar 

  61. Liu X, Chen T, Jain PK, Xu W (2019) J Phys Chem B 123:6253

    CAS  PubMed  Google Scholar 

  62. Machado HG, Sanches-Neto FO, Coutinho ND, Mundim KC, Palazzetti F, Carvalho-Silva VH (2019) Molecules 24:3478

    CAS  PubMed Central  Google Scholar 

  63. Zuniga-Hansen N, Silbert LE, Calbi MM (2018) Phys Rev E 98:032128

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquin F. Perez-Benito.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Benito, J.F., Alburquerque-Alvarez, I. Kinetic compensation effect: discounting the distortion provoked by accidental experimental errors in the isokinetic temperature value. Monatsh Chem 151, 1805–1816 (2020). https://doi.org/10.1007/s00706-020-02710-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02710-6

Keywords

Navigation