Skip to main content
Log in

Online detection of the breathing crack using an adaptive tracking technique

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Early detection of structural damage is an important goal of any structural health monitoring system. Among numerous data analysis techniques, those which are used for online damage detection have received considerable attention recently, although the problem of online detection in continuous structures, for example beams, is quite challenging. In this paper, it is shown how the type, the size and the location of breathing cracks are identified online with the use of the records which are gathered from a continuous beam. For determining the existence of a breathing crack in a beam, its vibrating behavior is simulated. The algorithm of the least square estimation with the use of adaptive tracking is employed for identification purposes. This algorithm is capable of detecting the abrupt changes in problem parameters and traces its variations. With the use of reducing domain algorithm, this identification method shows better results and can detect the breathing crack in beams more efficiently. Finally, it is shown that with the use of sufficient mode shapes the method is capable of identifying the breathing crack in beams and frames. The efficiency of the proposed algorithm is shown through some case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. W. Lin R. Betti A. W. Smyth R. W. Longman (2001) ArticleTitleOnline identification of nonlinear hysteretic structural systems using a variable trace approach Earthquake Engng. Struct. Dyn. 30 1279–1303 Occurrence Handle10.1002/eqe.63

    Article  Google Scholar 

  • A. W. Smyth S. F. Masri A. G. Chassiakos T. K. Caughey (1999) ArticleTitleOnline parametric identification of MDOF nonlinear hysteretic systems ASCE J. Engng. Mech. 125 133–142 Occurrence Handle10.1061/(ASCE)0733-9399(1999)125:2(133)

    Article  Google Scholar 

  • J. N. Yang S. Lin (2004) ArticleTitleOnline identification of nonlinear hysteretic structures using an adaptive tracking technique Int. J. Nonlinear Mech. 39 1481–1491 Occurrence Handle10.1016/j.ijnonlinmec.2004.02.010 Occurrence Handle05138546

    Article  MATH  Google Scholar 

  • M. Shinozuka C. Yun H. Imai (1982) ArticleTitleIdentification of linear structural dynamic systems ASCE J. Engng. Mech. 108 1371–1390

    Google Scholar 

  • M. Shinozuka R. Ghanem (1995) ArticleTitleStructural system identification. II: Experimental verification ASCE J. Engng. Mech. 121 265–273 Occurrence Handle10.1061/(ASCE)0733-9399(1995)121:2(265)

    Article  Google Scholar 

  • M. Hoshiya E. Saito (1984) ArticleTitleStructural identification by extended Kalman filter ASCE J. Engng. Mech. 110 1757–1771 Occurrence Handle10.1061/(ASCE)0733-9399(1984)110:12(1757)

    Article  Google Scholar 

  • T. Sato K. Qi (1998) ArticleTitleAdaptive H∞ filter: its application to structural identification ASCE J. Engng. Mech. 124 1233–1240 Occurrence Handle10.1061/(ASCE)0733-9399(1998)124:11(1233)

    Article  Google Scholar 

  • Yoshida, I.: Damage detection using Monte Carlo filter based on non-Gaussian noise. Proceedings on Structural Safety and Reliability, ICOSSA 2001. Lisse: Swets & Zeitinger 2002.

  • M. Krawczuk W. Ostachowicz (1996) ArticleTitleDamage indicators for diagnostic of fatigue cracks in structures by vibration measurements – a survey J. Theo. Appl. Mech. 34 307–326

    Google Scholar 

  • M. H. H. Shen Y. C. Chu (1992) ArticleTitleVibrations of beams with a fatigue crack Comput. Struct. 45 79–93 Occurrence Handle10.1016/0045-7949(92)90347-3

    Article  Google Scholar 

  • M. H. H. Shen Y. C. Chu (1992) ArticleTitleAnalysis of forced bilinear oscillators and the application to cracked beam dynamics Am. Inst. Aeronaut. Astronaut. J. 30 2512–2519 Occurrence Handle0761.73061

    MATH  Google Scholar 

  • O. N. L. Abraham J. A. Brandon (1995) ArticleTitleThe modeling of the opening and closure of a crack J. Vibr. Acoust. 117 370–377

    Google Scholar 

  • A. Ibrahim F. Ismail H. K. Martin (1990) ArticleTitleIdentification of fatigue cracks from vibrating testing J. Sound Vibr. 140 305–317 Occurrence Handle10.1016/0022-460X(90)90530-D

    Article  Google Scholar 

  • W. M. Ostachowich M. Krawczuk (1991) ArticleTitleAnalysis of the effect of cracks on the natural frequencies of a cantilever beam J. Sound Vibr. 150 191–201 Occurrence Handle10.1016/0022-460X(91)90615-Q

    Article  Google Scholar 

  • P. G. Kirshmer (1994) ArticleTitleThe effect of discontinuities on the natural frequency of beams Proc. ASTM 44 897–904

    Google Scholar 

  • H. J. Petroski (1981) ArticleTitleSimple static and dynamic models for the cracked elastic beam Int. J. Fract. 17 R71–R76 Occurrence Handle10.1007/BF00036201

    Article  Google Scholar 

  • A. Joshi B. S. Madhusudhan (1991) ArticleTitleA unified approach to free vibration of locally damaged beams having various homogeneous boundary conditions J. Sound Vibr. 147 475–488 Occurrence Handle10.1016/0022-460X(91)90495-6

    Article  Google Scholar 

  • M. H. H. Shen C. Pierre (1994) ArticleTitleFree vibrations of beams with a single-edge crack J. Sound. Vibr. 170 237–259 Occurrence Handle10.1006/jsvi.1994.1058 Occurrence Handle0925.73451

    Article  MATH  Google Scholar 

  • M. Chati R. Rand S. Mukherjee (1997) ArticleTitleModal analysis of a cracked beam J. Sound Vibr. 207 249–270 Occurrence Handle10.1006/jsvi.1997.1099

    Article  Google Scholar 

  • A. P. Bovsunovsky V. V. Matveev (2000) ArticleTitleAnalytical approach to the determination of dynamic characteristics of a beam with a closing crack J. Sound Vibr. 235 415–434 Occurrence Handle10.1006/jsvi.2000.2930

    Article  Google Scholar 

  • H. Tada P. Paris G. Irwin (1973) The stress analysis of crack handbook Del Research Corporation Hellertown, Pensilvania

    Google Scholar 

  • G. C. Goodwin K. S. Sin (1984) Adaptive Filtering, Prediction and Control Prentice-Hall Englewood Cliffs Occurrence Handle0653.93001

    MATH  Google Scholar 

  • Q. Xia M. Y. Rao X. Shen (1994) ArticleTitleAdaptive fading Kalman filter with an application Automatica 30 1333–1338 Occurrence Handle10.1016/0005-1098(94)90112-0 Occurrence Handle1288623

    Article  MathSciNet  Google Scholar 

  • U. Lee J. Shin (2002) ArticleTitleA frequency response function-based structural damage identification method Comp. Struct. 80 117–132 Occurrence Handle10.1016/S0045-7949(01)00170-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaveh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sholeh, K., Vafai, A. & Kaveh, A. Online detection of the breathing crack using an adaptive tracking technique. Acta Mechanica 188, 139–154 (2007). https://doi.org/10.1007/s00707-006-0383-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-006-0383-y

Keywords

Navigation