Skip to main content

Advertisement

Log in

Protein function prediction with high-throughput data

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Protein function prediction is one of the main challenges in post-genomic era. The availability of large amounts of high-throughput data provides an alternative approach to handling this problem from the computational viewpoint. In this review, we provide a comprehensive description of the computational methods that are currently applicable to protein function prediction, especially from the perspective of machine learning. Machine learning techniques can generally be classified as supervised learning, semi-supervised learning and unsupervised learning. By classifying the existing computational methods for protein annotation into these three groups, we are able to present a comprehensive framework on protein annotation based on machine learning techniques. In addition to describing recently developed theoretical methodologies, we also cover representative databases and software tools that are widely utilized in the prediction of protein function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arnau V, Mars S, Marn I (2005) Iterative cluster analysis of protein interaction data. Bioinformatics 21:364–378

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  • Bader G, Hogue C (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2

    Article  PubMed  Google Scholar 

  • Bandyopadhyay D, Huan J, Liu J, Prins J, Snoeyink J, Wang W, Tropsha A (2006) Structure-based function inference using protein family-specific fingerprints. Protein Sci 15:1537–1543

    Article  PubMed  CAS  Google Scholar 

  • Barutcuoglu Z, Schapire RE, Troyanskaya OG (2006) Hierarchical multi-label prediction of gene function. Bioinformatics 22:830–836

    Article  PubMed  CAS  Google Scholar 

  • Blatt M, Wiseman S, Domany E (1996) Superparamagnetic clustering of data. Phys Rev Lett 76:3251–3254

    Article  PubMed  CAS  Google Scholar 

  • Brohee S, van Helden J (2006) Evaluation of clustering algorithms for protein–protein interaction networks. BMC Bioinformatics 7:488

    Article  PubMed  CAS  Google Scholar 

  • Brown MPS, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Manuel AJ, Haussler D (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA 97:262–267

    Article  PubMed  CAS  Google Scholar 

  • Brun C, Chevenet F, Martin D, Wojcik J, Guenoche A, Jacq B (2003) Functional classification of proteins for the prediction of cellular function from a protein–protein interaction network. Genome Biol 5:R6

    Article  PubMed  Google Scholar 

  • Cai YD, Chou KC (2003) Nearest neighbour algorithm for predicting protein subcellular location by combining functional domain composition and pseudo-amino acid composition. Biochem Biophys Res Comm 305:407–411

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Chou KC (2005) Predicting enzyme subclass by functional domain composition and pseudo amino acid composition. J Proteome Res 4:967–971

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Chou KC (2006) Predicting membrane protein type by functional domain composition and pseudo amino acid composition. J Theor Biol 238:395–400

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Zhou GP, Chou KC (2005) Predicting enzyme family classes by hybridizing gene product composition and pseudo-amino acid composition. J Theor Biol 234:145–149

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Liu S, Zhang L, Qin J, Wang J, Tang K (2006) Prediction of protein structural class with Rough Sets. BMC Bioinformatics 7:20

    Article  PubMed  CAS  Google Scholar 

  • Carter RJ, Dubchak I, Holbrook SR (2001) A computational approach to identify genes for functional RNAs in genomic sequences. Nucleic Acids Res 29:3928–3938

    PubMed  CAS  Google Scholar 

  • Chen YL, Li QZ (2007a) Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo amino acid composition. J Theor Biol 248:377–381

    Article  PubMed  CAS  Google Scholar 

  • Chen YL, Li QZ (2007b) Prediction of the subcellular location of apoptosis proteins. J Theor Biol 245:775–783

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Tian YX, Zou XY, Cai PX, Mo JY (2006a) Using pseudo-amino acid composition and support vector machine to predict protein structural class. J Theor Biol 243:444–448

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Zhou X, Tian Y, Zou X, Cai P (2006b) Predicting protein structural class with pseudo-amino acid composition and support vector machine fusion network. Anal Biochem 357:116–121

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Liu H, Yang J, Chou KC (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33:423–428

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Wu LY, Wang Y, Zhang S, Zhang XS (2006c) Revealing divergent evolution, identifying circular permutations and detecting active-sites by protein structure comparison. BMC Struct Biol 6:18

    Article  PubMed  Google Scholar 

  • Chen Y, Xu D (2004) Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae. Nucleic Acids Res 32:6414–6424

    Article  PubMed  CAS  Google Scholar 

  • Chien C, Bartel P, Sternglanz R, Fields S (1991) The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci USA 88:9578–9582

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2001) Prediction of protein cellular attributes using pseudo amino acid composition. Proteins 43:246–255 (Erratum: ibid., 2001, vol 44, 60)

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2005) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21:10–19

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Cai YD (2005) Prediction of membrane protein types by incorporating amphipathic effects. J Chem Inform Model 45:407–413

    Article  CAS  Google Scholar 

  • Chou KC, Cai YD (2006) Predicting protein–protein interactions from sequences in a hybridization space. J Proteome Res 5:316–322

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2006a) Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization. Biochem Biophys Res Commun 347:150–157

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2006b) Large-scale predictions of Gram-negative bacterial protein subcellular locations. J Proteome Res 5:3420–3428

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007a) Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. J Proteome Res 6:1728–1734

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007b) Large-scale plant protein subcellular location prediction. J Cell Biochem 100:665–678

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007c) MemType-2L: a Web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem Biophys Res Comm 360:339–345

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007d) Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Comm 357:633–640

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007e) Review: recent progresses in protein subcellular location prediction. Anal Biochem 370:1–16

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2008) Cell-PLoc: a package of web-servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 3:153–162

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Zhang CT (1995) Review: prediction of protein structural classes. Crit Rev Biochem Mol Biol 30:275–349

    Article  PubMed  CAS  Google Scholar 

  • Chua HN, Sung WK, Wong L (2006) Exploiting indirect neighbours and topological weight to predict protein function from protein–protein interactions. Bioinformatics 22:1623–1630

    Article  PubMed  CAS  Google Scholar 

  • Chua HN, Sung WK, Wong L (2007) An efficient strategy for extensive integration of diverse biological data for protein function prediction. Bioinformatics 23:3364–3373

    Article  PubMed  CAS  Google Scholar 

  • Deng M, Zhang K, Mehta S, Chen T, Sun F (2003) Prediction of protein function using protein–protein interaction data. J Comput Biol 10:947–960

    Article  PubMed  CAS  Google Scholar 

  • Diao Y, Li M, Feng Z, Yin J, Pan Y (2007) The community structure of human cellular signaling network. J Theor Biol 247:608–615

    Article  PubMed  Google Scholar 

  • Diao Y, Ma D, Wen Z, Yin J, Xiang J, Li M (2008) Using pseudo amino acid composition to predict transmembrane regions in protein: cellular automata and Lempel-Ziv complexity. Amino Acids 34:111–117

    Article  PubMed  CAS  Google Scholar 

  • Ding YS, Zhang TL, Chou KC (2007) Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network. Protein Pept Lett 14:811–815

    Article  PubMed  CAS  Google Scholar 

  • Du P, Li Y (2006) Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence. BMC Bioinformatics 7:518

    Article  PubMed  CAS  Google Scholar 

  • Du QS, Wei DQ, Chou KC (2003) Correlation of amino acids in proteins. Peptides 24:1863–1869

    Article  PubMed  CAS  Google Scholar 

  • Du QS, Jiang ZQ, He WZ, Li DP, Chou KC (2006) Amino acid principal component analysis (AAPCA) and its applications in protein structural class prediction. J Biomol Struct Dyn 23:635–640

    PubMed  CAS  Google Scholar 

  • Dunn R, Dudbridge F, Sanderson C (2005) The use of edge-betweenness clustering to investigate biological function in protein interaction networks. BMC Bioinformatics 6:39

    Article  PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using targetp, signalp and related tools. Nat Protoc 2:953–971

    Article  PubMed  CAS  Google Scholar 

  • Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30:1575–1584

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Guo Y, Feng Y, Li M (2008) Predicting DNA-binding proteins: approached from Chou’s pseudo amino acid composition and other specific sequence features. Amino Acids 34:103–109

    Article  PubMed  CAS  Google Scholar 

  • Gao QB, Wang ZZ (2006) Classification of G-protein coupled receptors at four levels. Protein Eng Des Sel 19:511–516

    Article  PubMed  CAS  Google Scholar 

  • Gao QB, Wang ZZ, Yan C, Du YH (2005a) Prediction of protein subcellular location using a combined feature of sequence. FEBS Lett 579:3444–3448

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Shao SH, Xiao X, Ding YS, Huang YS, Huang ZD, Chou KC (2005b) Using pseudo amino acid composition to predict protein subcellular location: approached with Lyapunov index, Bessel function, and Chebyshev filter. Amino Acids 28:373–376

    Article  PubMed  CAS  Google Scholar 

  • Gavin AC, BÄosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, HÄofert C, Schelder M, Brajenovic M, Rufiner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Lin Y, Liu X (2006) GNBSL: a new integrative system to predict the subcellular location for Gram-negative bacteria proteins. Proteomics 6:5099–5105

    Article  PubMed  CAS  Google Scholar 

  • Guo YZ, Li M, Lu M, Wen Z, Wang K, Li G, Wu J (2006a) Classifying G protein-coupled receptors and nuclear receptors based on protein power spectrum from fast Fourier transform. Amino Acids 30:397–402

    Article  PubMed  CAS  Google Scholar 

  • Guo YZ, Li M, Lu M, Wen Z, Wang K, Li G, Wu J (2006b) Classifying G protein-coupled receptors and nuclear receptors based on protein power spectrum from fast Fourier transform. Amino Acids 30:397–402

    Article  PubMed  CAS  Google Scholar 

  • Hanisch D, Zien A, Zimmer R, Lengauer T (2002) Co-clustering of biological networks and gene expression data. Bioinformatics 18:S145–S154

    PubMed  Google Scholar 

  • Hartuv E, Shamir R (2000) A clustering algorithm based on graph connectivity. Inform Process Lett 76:175–181

    Article  Google Scholar 

  • Hishigaki H, Nakai K, Ono T, Tanigami A, Takagi T (2001) Assessment of prediction accuracy of protein function from protein–protein interaction data. Yeast 18:523–531

    Article  PubMed  CAS  Google Scholar 

  • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorfi S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, S¿rensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183

    Article  PubMed  CAS  Google Scholar 

  • Hou J, Jun SR, Zhang C, Kim SH (2005) From The Cover: global mapping of the protein structure space and application in structure-based inference of protein function. Proc Natl Acad Sci USA 102:3651–3656

    Article  PubMed  CAS  Google Scholar 

  • Huang D (1996) Systematic theory of neural networks for pattern recognition. Publishing House of Electronic Industry of China, Beijing

    Google Scholar 

  • Huang D (1999) Radial basis probabilistic neural networks: model and application. Int J Pattern Recognit Artif Intell 13:1083–1101

    Article  Google Scholar 

  • Huang Y, Li Y (2004) Prediction of protein subcellular locations using fuzzy k-nn method. Bioinformatics 20:21–28

    Article  PubMed  CAS  Google Scholar 

  • Huang DS, Zhao XM, Huang GB, Cheung YM (2006) Classifying protein sequences using hydropathy blocks. Pattern Recogn 39:2293–2300

    Article  Google Scholar 

  • Huang Y, Li H, Hu H, Yan X, Waterman MS, Huang H, Zhou XJ (2007) Systematic discovery of functional modules and context-specific functional annotation of human genome. Bioinformatics 23:i222–i229

    Article  PubMed  CAS  Google Scholar 

  • Jaakkola T, Diekhans M, Haussler D (2000) A discriminative framework for detecting remote protein homologies. J Comput Biol 7:95–114

    Article  PubMed  CAS  Google Scholar 

  • Jahandideh S, Abdolmaleki P, Jahandideh M, Asadabadi EB (2007) Novel two-stage hybrid neural discriminant model for predicting proteins structural classes. Biophys Chem 128:87–93

    Article  PubMed  CAS  Google Scholar 

  • Karaoz U, Murali TM, Letovsky S, Zheng Y, Ding C, Cantor CR, Kasif S (2004) Whole-genome annotation by using evidence integration in functional-linkage networks. Proc Natl Acad Sci USA 101:2888–2893

    Article  PubMed  CAS  Google Scholar 

  • Kedarisetti KD, Kurgan LA, Dick S (2006) Classifier ensembles for protein structural class prediction with varying homology. Biochem Biophys Res Commun 348:981–988

    Article  PubMed  CAS  Google Scholar 

  • King AD, Przulj N, Jurisica I (2004) Protein complex prediction via cost-based clustering. Bioinformatics 20:3013–3020

    Article  PubMed  CAS  Google Scholar 

  • Kirac M, Ozsoyoglu G, Yang J (2006) Annotating proteins by mining protein interaction networks. Bioinformatics 22:e260–e270

    Article  PubMed  CAS  Google Scholar 

  • Kurgan LA, Stach W, Ruan J (2007) Novel scales based on hydrophobicity indices for secondary protein structure. J Theor Biol 248:354–366

    Article  PubMed  CAS  Google Scholar 

  • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrín-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643

    Article  PubMed  CAS  Google Scholar 

  • Lanckriet GR, Deng M, Cristianini N, Jordan MI, Noble WS (2004) Kernel-based data fusion and its application to protein function prediction in yeast. In: Pac Symp Biocomput. Division of Electrical Engineering. University of California, Berkeley, pp 300–311

  • Lee H, Tu Z, Deng M, Sun F, Chen T (2006) Diffusion kernel-based logistic regression models for protein function prediction. OMICS: J Integr Biol 10:40–55

    Article  CAS  Google Scholar 

  • Leslie CS, Eskin E, Cohen A,Weston J, Noble WS (2004) Mismatch string kernels for discriminative protein classification. Bioinformatics 20:467–476

    Article  PubMed  CAS  Google Scholar 

  • Letovsky S, Kasif S (2003) Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19:i197–i204

    Article  PubMed  Google Scholar 

  • Li FM, Li QZ (2008) Using pseudo amino acid composition to predict protein subnuclear location with improved hybrid approach. Amino Acids 34:119–125

    Article  PubMed  CAS  Google Scholar 

  • Liao L, Noble WS (2002) Combining pairwise sequence similarity and support vector machines for remote protein homology detection. In: RECOMB ‘02: Proc 6th Annu Int Conf Comput Biol. ACM, New York, pp 225–232

  • Lin H, Li QZ (2007a) Predicting conotoxin superfamily and family by using pseudo amino acid composition and modified Mahalanobis discriminant. Biochem Biophys Res Commun 354:548–551

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Li QZ (2007b) Using pseudo amino acid composition to predict protein structural class: approached by incorporating 400 Dipeptide components. J Comput Chem 28:1463–1466

    Article  PubMed  CAS  Google Scholar 

  • Liu DQ, Liu H, Shen HB, Yang J, Chou KC (2007a) Predicting secretory protein signal sequence cleavage sites by fusing the marks of global alignments. Amino Acids 32:493–496

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Wang M, Chou KC (2005a) Low-frequency Fourier spectrum for predicting membrane protein types. Biochem Biophys Res Commun 336:737–739

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Yang J, Wang M, Xue L, Chou KC (2005b) Using Fourier spectrum analysis and pseudo amino acid composition for prediction of membrane protein types. Protein J 24:385–389

    Article  PubMed  CAS  Google Scholar 

  • Liu Z,Wu LY,Wang Y, Zhang XS, Chen L (2007b) Predicting gene ontology functions from protein’s regional surface structures. BMC Bioinformatics 8:475

    Article  PubMed  CAS  Google Scholar 

  • Massjouni N, Rivera CG, Murali TM (2006) VIRGO: computational prediction of gene functions. Nucleic Acids Res 34:W340–W344

    Article  PubMed  CAS  Google Scholar 

  • Mateos A, Dopazo J, Jansen R, Tu Y, Gerstein M, Stolovitzky G (2002) Systematic learning of gene functional classes from DNA array expression data by using multilayer perceptrons. Genome Res 12:1703–1715

    Article  PubMed  CAS  Google Scholar 

  • Mondal S, Bhavna R, Mohan Babu R, Ramakumar S (2006) Pseudo amino acid composition and multi-class support vector machines approach for conotoxin superfamily classification. J Theor Biol 243:252–260

    Article  PubMed  CAS  Google Scholar 

  • Mundra P, Kumar M, Kumar KK, Jayaraman VK, Kulkarni BD (2007) Using pseudo amino acid composition to predict protein subnuclear localization: approached with PSSM. Pattern Recognit Lett 28:1610–1615

    Article  Google Scholar 

  • Murphy KP, Weiss Y, Jordan M (1999) Loopy belief propagation for approximate inference: an empirical study. In: Laskey KB, Prade (eds) Proc Uncertainty Artificial Intelligence. Morgan Kaufmann, San Mateo, pp 467–475

  • Myers CL, Troyanskaya OG (2007) Context-sensitive data integration and prediction of biological networks. Bioinformatics 23:2322–2330

    Article  PubMed  CAS  Google Scholar 

  • Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M (2005) Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21:302–310

    Article  Google Scholar 

  • Nanni L, Lumini A (2008a) Combing ontologies and dipeptide composition for predicting DNA-binding proteins. Amino Acids. doi:10.1007/s00726-007-0018-1

  • Nanni L, Lumini A (2008b) Genetic programming for creating Chou’s pseudo amino acid based features for submitochondria localization. Amino Acids. doi:10.1007/s00726-007-0016-3

  • Niu B, Cai YD, Lu WC, Zheng GY, Chou KC (2006) Predicting protein structural class with AdaBoost learner. Protein Pept Lett 13:489–492

    Article  PubMed  CAS  Google Scholar 

  • Ng SK, Tan SH (2003) On combining multiple microarray studies for improved functional classification by whole-dataset feature selection. Genome Inform 14:44–53

    PubMed  CAS  Google Scholar 

  • Pandey G, Kumar V (2007) Incorporating functional inter-relationships into algorithms for protein function prediction. In: ISMB Satellite Meet Automated Function Prediction.

  • Pandey G, Steinbach M, Gupta R, Garg T, Kumar V (2007) Association analysis-based transformations for protein interaction networks: a function prediction case study. In: KDD ‘07: Proc 13th ACM SIGKDD Int Conf Knowledge Discovery and data mining. ACM, New York, pp 540–549

  • Pereira-Leal JB, Enright AJ, Ouzounis CA (2004) Detection of functional modules from protein interaction networks. Proteins 54:49–57

    Article  PubMed  CAS  Google Scholar 

  • Przulj N, Wigle D, Jurisica I (2004) Functional topology in a network of protein interactions. Bioinformatics 20:340–348

    Article  PubMed  CAS  Google Scholar 

  • Pu X, Guo J, Leung H, Lin Y (2007) Prediction of membrane protein types from sequences and position-specific scoring matrices. J Theor Biol 247:259–265

    Article  PubMed  CAS  Google Scholar 

  • Pugalenthi G, Tang K, Suganthan PN, Archunan G, Sowdhamini R (2007) A machine learning approach for the identification of odorant binding proteins from sequence-derived properties. BMC Bioinformatics 8:351

    Article  PubMed  CAS  Google Scholar 

  • Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Rives AW, Galitski T (2003) Modular organization of cellular networks. Proc Natl Acad Sci USA 100:1128–1133

    Article  PubMed  CAS  Google Scholar 

  • Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Guldener U, Mannhaupt G, Munsterkotter M, Mewes HW (2004) The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 32:5539–5545

    Article  PubMed  CAS  Google Scholar 

  • Samanta MP, Liang S (2003) Predicting protein functions from redundancies in large-scale protein interaction networks. Proc Natl Acad Sci USA 100:12579–12583

    Article  PubMed  CAS  Google Scholar 

  • Schwikowski B, Uetz P, Fields S (2000) A network of protein–protein interactions in yeast. Nat Biotechnol 18:1257–1261

    Article  PubMed  CAS  Google Scholar 

  • Segal E, Wang H, Koller D (2003) Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics 19:264–272

    Article  Google Scholar 

  • Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3:88

    Article  PubMed  Google Scholar 

  • Shen HB, Chou KC (2005a) Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition. Biochem Biophys Res Comm 337:752–756

    PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2005b) Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo amino acid composition to predict membrane protein types. Biochem Biophys Res Commun 334:288–292

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2006) Ensemble classifier for protein fold pattern recognition. Bioinformatics 22:1717–1722

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007a) EzyPred: a top-down approach for predicting enzyme functional classes and subclasses. Biochem Biophys Res Comm 364:53–59

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007b) Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins. Protein Eng Design Select 20:39–46

    Article  CAS  Google Scholar 

  • Shen HB, Chou KC (2007c) Hum-mPLoc: an ensemble classifier for large-scale human protein subcellular location prediction by incorporating samples with multiple sites. Biochem Biophys Res Commun 355:1006–1011

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007d) Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Eng Design Select 20:561–567

    Article  CAS  Google Scholar 

  • Shen HB, Chou KC (2007e) Signal-3L: a 3-layer approach for predicting signal peptide. Biochem Biophys Res Comm 363:297–303

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007f) Using ensemble classifier to identify membrane protein types. Amino Acids 32:483–488

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007g) Virus-PLoc: a fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells. Biopolymers 85:233–240

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007h) Using ensemble classifier to identify membrane protein types. Amino Acids 32:483–488

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Yang J, Chou KC (2006) Fuzzy KNN for predicting membrane protein types from pseudo amino acid composition. J Theor Biol 240:9–13

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Yang J, Chou KC (2007) Euk-ploc: an ensemble classifier for large-scale eukaryotic protein subcellular location prediction. Amino Acids 33:57–67

    Article  PubMed  CAS  Google Scholar 

  • Shi JY, Zhang SW, Pan Q, Cheng Y-M, Xie J (2007) Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition. Amino Acids 33:69–74

    Article  PubMed  CAS  Google Scholar 

  • Shi JY, Zhang SW, Pan Q, Zhou GP (2008) Using pseudo amino acid composition to predict protein subcellular location: approached with amino acid composition distribution. Amino Acids doi:10.1007/s00726–007–0623-z

  • Shiga M, Takigawa I, Mamitsuka H (2007) Annotating gene function by combining expression data with a modular gene network. Bioinformatics 23:468–478

    Article  CAS  Google Scholar 

  • Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci USA 100:12123–12128

    Article  PubMed  CAS  Google Scholar 

  • Sun XD, Huang RB (2006) Prediction of protein structural classes using support vector machines. Amino Acids 30:469–475

    Article  PubMed  CAS  Google Scholar 

  • Tanay A, Sharan R, Kupiec M, Shamir R (2004) Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc Natl Acad Sci USA 101:2981–2986

    Article  PubMed  CAS  Google Scholar 

  • Tan F, Feng X, Fang Z, Li M, Guo Y, Jiang L (2007) Prediction of mitochondrial proteins based on genetic algorithm—partial least squares and support vector machine. Amino Acids 33:669–675

    Article  PubMed  CAS  Google Scholar 

  • Tantoso E, Li XB (2007) AAIndexLoc: predicting subcellular localization of proteins based on a new representation of sequences using amino acid indices. Amino Acids doi:10.1007/s00726–007-0616-y

  • Tornow S, Mewes HW (2003) Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Res 31:6283–6289

    Article  PubMed  CAS  Google Scholar 

  • Troyanskaya OG, Dolinski K, Owen AB, Altman RB, Botstein D (2003) A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc Natl Acad Sci USA 100:8348–8353

    Article  PubMed  CAS  Google Scholar 

  • Tsuda K, Shin H, Scholkopf B (2005) Fast protein classification with multiple networks. Bioinformatics 21:59–65

    Article  Google Scholar 

  • Vazquez A, Flammini A, Maritan A, Vespignani A (2003) Global protein function prediction from protein–protein interaction networks. Nat Biotechnol 21:697–700

    Article  PubMed  CAS  Google Scholar 

  • Vinga S, Almeida J (2003) Alignment-free sequence comparison–a review. Bioinformatics 19:513–523

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Yang J, Liu GP, Xu ZJ, Chou KC (2004) Weighted-support vector machines for predicting membrane protein types based on pseudo amino acid composition. Protein Eng Design Select 17:509–516

    Article  CAS  Google Scholar 

  • Wang M, Yang J, Chou KC (2005) Using string kernel to predict signal peptide cleavage site based on subsite coupling model. Amino Acids 28:395–402 (Erratum, ibid. 2005, 29:301)

    Google Scholar 

  • Wang SQ, Yang J, Chou KC (2006) Using stacked generalization to predict membrane protein types based on pseudo amino acid composition. J Theor Biol 242:941–946

    Article  PubMed  CAS  Google Scholar 

  • Wen Z, Li M, Li Y, Guo Y, Wang K (2007) Delaunay triangulation with partial least squares projection to latent structures: a model for G-protein coupled receptors classification and fast structure recognition. Amino Acids 32:277–283

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Chou KC (2007) Digital coding of amino acids based on hydrophobic index. Protein Pept Lett 14:871–875

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Shao S, Ding Y, Huang Z, Huang Y, Chou KC (2005) Using complexity measure factor to predict protein subcellular location. Amino Acids 28:57–61

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Shao SH, Ding YS, Huang ZD, Chou KC (2006a) Using cellular automata images and pseudo amino acid composition to predict protein subcellular location. Amino Acids 30:49–54

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Shao SH, Huang ZD, Chou KC (2006b) Using pseudo amino acid composition to predict protein structural classes: approached with complexity measure factor. J Comput Chem 27:478–482

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Jin G, Zhang XS, Chen L (2007) Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics 7:2856–2869

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Pan Q, Zhang HC, Shao ZC, Shi JY (2006) Prediction protein homo-oligomer types by pseudo amino acid composition: approached with an improved feature extraction and naive Bayes feature fusion. Amino Acids 30:461–468

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Zhang YL, Yang HF, Zhao CH, Pan Q (2007) Using the concept of Chou’s pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies. Amino Acids. doi:10.1007/s00726–007–0010-9

  • Zhang TL, Ding YS (2007) Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes. Amino Acids 33:623–629

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Ding Y, Chou KC (2006) Prediction of protein subcellular location using hydrophobic patterns of amino acid sequence. Comput Biol Chem 30:367–371

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZH, Wang ZH, Zhang ZR, Wang YX (2006) A novel method for apoptosis protein subcellular localization prediction combining encoding based on grouped weight and support vector machine. FEBS Lett 580:6169–6174

    Article  PubMed  CAS  Google Scholar 

  • Zhao XM, Cheung YM, Huang DS (2005) A novel approach to extracting features from motif content and protein composition for protein sequence classification. Neural Networks 18:1019–1028

    Article  PubMed  Google Scholar 

  • Zhao XM, Chen LN, Aihara K (2007) Gene function prediction with the shortest path in functional linkage graph. Lect Notes Oper Res 7:68–74

    Google Scholar 

  • Zhao XM, Chen LN, Aihara K (2008a) Gene function prediction using labeled and unlabeled data. BMC Bioinformatics 9:57

    Article  PubMed  CAS  Google Scholar 

  • Zhao XM, Chen LN, Aihara K (2008b) Protein classification with imbalanced data. Proteins 70:1125–1132

    Article  PubMed  CAS  Google Scholar 

  • Zhou GP (1998) An intriguing controversy over protein structural class prediction. J Protein Chem 17:729–738

    Article  PubMed  CAS  Google Scholar 

  • Zhou GP, Assa-Munt N (2001) Some insights into protein structural class prediction. Proteins 44:57–59

    Article  PubMed  CAS  Google Scholar 

  • Zhou GP, Doctor K (2003) Subcellular location prediction of apoptosis proteins. Proteins 50:44–48

    Article  PubMed  CAS  Google Scholar 

  • Zhou XB, Chen C, Li ZC, Zou XY (2007a) Improved prediction of subcellular location for apoptosis proteins by the dual-layer support vector machine. Amino Acids. doi:10.1007/s00726–007-0608-y

  • Zhou XB, Chen C, Li ZC, Zou XY (2007b) Using Chou’s amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes. J Theor Biol 248:546–551

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Kao MCJ, Wong WH (2002) From the Cover: transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci USA 99:12783–12788

    Article  PubMed  CAS  Google Scholar 

  • Zhou XJ, Kao MCJ, Huang H, Wong A, Nunez-Iglesias J, Primig M, Aparicio OM, Finch CE, Morgan TE, Wong WH (2005) Functional annotation and network reconstruction through cross-platform integration of microarray data. Nat Biotechnol 23:238–243

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National High Technology Research and Development Program of China (2006AA02Z309), and JSPS-NSFC collaboration project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Aihara.

Additional information

This work was partly supported by the National High Technology Research and Development Program of China (2006AA02Z309), and JSPS-NSFC collaboration project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, XM., Chen, L. & Aihara, K. Protein function prediction with high-throughput data. Amino Acids 35, 517–530 (2008). https://doi.org/10.1007/s00726-008-0077-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0077-y

Keywords

Navigation