Skip to main content

Advertisement

Log in

Gluten T cell epitope targeting by TG3 and TG6; implications for dermatitis herpetiformis and gluten ataxia

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Transglutaminase 2 (TG2) is well characterized as the main autoantigen of celiac disease. The ability of TG2 to deamidate and crosslink gluten peptides is essential for the gluten-dependent production of TG2 specific autoantibodies. In patients with primarily extraintestinal manifestation of gluten sensitivity the repertoire of autoantibodies may be different. In dermatitis herpetiformis (DH), TG3 appears to be the target autoantigen whereas in gluten ataxia (GA) autoantibodies reactive with TG6 are present. A functional role for TG3 and TG6 in these diseases has yet to be described. It is also not known whether these enzymes can use gluten peptides implicated in the pathology as substrates. We here report that similar to TG2, TG3 and TG6 can specifically deamidate gluten T cell epitopes. However, the fine specificities of the enzymes were found to differ. TG2 can form covalent complexes with gluten by iso-peptide and thioester bonds. We found that both TG3 and TG6 were able to complex with gluten peptides through thioester linkage although less efficiently than TG2, whereas TG6 but not TG3 was able to form iso-peptide linked complexes. Our findings lend credence to the notion that TG3 and TG6 are involved in the gluten-induced autoimmune responses of DH and GA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CD:

Celiac disease

DH:

Dermatitis herpetiformis

GA:

Gluten ataxia

TGase:

Transglutaminase

TG2:

Transglutaminase 2

TG3:

Transglutaminase 3

TG6:

Transglutaminase 6

References

  • Aeschlimann D, Thomazy V (2000) Protein crosslinking in assembly and remodelling of extracellular matrices: the role of transglutaminases. Connect Tissue Res 41(1):1–27

    Article  CAS  PubMed  Google Scholar 

  • Arentz-Hansen H, Korner R et al (2000) The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J Exp Med 191(4):603–612

    Article  CAS  PubMed  Google Scholar 

  • Arentz-Hansen H, McAdam SN et al (2002) Celiac lesion T cells recognize epitopes that cluster in regions of gliadins rich in proline residues. Gastroenterology 123(3):803–809

    Article  PubMed  Google Scholar 

  • Boros S, Ahrman E et al (2006) Site-specific transamidation and deamidation of the small heat-shock protein Hsp20 by tissue transglutaminase. Proteins 62(4):1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Buus S, Stryhn A et al (1995) Receptor-ligand interactions measured by an improved spun column chromatography technique. A high efficiency and high throughput size separation method. Biochim Biophys Acta 1243(3):453–460

    PubMed  Google Scholar 

  • Candi E, Melino G et al (1995) Biochemical, structural, and transglutaminase substrate properties of human loricrin, the major epidermal cornified cell envelope protein. J Biol Chem 270(44):26382–26390

    Article  CAS  PubMed  Google Scholar 

  • de Ritis G, Auricchio S et al (1988) In vitro (organ culture) studies of the toxicity of specific A-gliadin peptides in celiac disease. Gastroenterology 94(1):41–49

    PubMed  Google Scholar 

  • Dieterich W, Ehnis T et al (1997) Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 3(7):797–801

    Article  CAS  PubMed  Google Scholar 

  • Dieterich W, Laag E et al (1998) Autoantibodies to tissue transglutaminase as predictors of celiac disease. Gastroenterology 115(6):1317–1321

    Article  CAS  PubMed  Google Scholar 

  • Dieterich W, Esslinger B et al (2006) Cross linking to tissue transglutaminase and collagen favours gliadin toxicity in coeliac disease. Gut 55(4):478–484

    Article  CAS  PubMed  Google Scholar 

  • Dorum S, Qiao SW et al (2009) A quantitative analysis of transglutaminase 2-mediated deamidation of gluten peptides: implications for the T-cell response in celiac disease. J Proteome Res 8(4):1748–1755

    Article  CAS  PubMed  Google Scholar 

  • Fasano A, Catassi C (2001) Current approaches to diagnosis and treatment of celiac disease: an evolving spectrum. Gastroenterology 120(3):636–651

    Article  CAS  PubMed  Google Scholar 

  • Fleckenstein B, Molberg O et al (2002) Gliadin T cell epitope selection by tissue transglutaminase in celiac disease. Role of enzyme specificity and pH influence on the transamidation versus deamidation process. J Biol Chem 277(37):34109–34116

    Article  CAS  PubMed  Google Scholar 

  • Fleckenstein B, Qiao SW et al (2004) Molecular characterization of covalent complexes between tissue transglutaminase and gliadin peptides. J Biol Chem 279(17):17607–17616

    Article  CAS  PubMed  Google Scholar 

  • Folk JE (1983) Mechanism and basis for specificity of transglutaminase-catalyzed epsilon-(gamma-glutamyl) lysine bond formation. Adv Enzymol Relat Areas Mol Biol 54:1–56

    CAS  PubMed  Google Scholar 

  • Fry L (1995) Dermatitis herpetiformis. Baillieres Clin Gastroenterol 9(2):371–393

    Article  CAS  PubMed  Google Scholar 

  • Greenwood FC, Hunter WM et al (1963) The preparation of I-131-labelled human growth hormone of high specific radioactivity. Biochem J 89:114–123

    CAS  PubMed  Google Scholar 

  • Grenard P, Bates MK et al (2001) Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z. J Biol Chem 276(35):33066–33078

    Article  CAS  PubMed  Google Scholar 

  • Hadjivassiliou M, Grunewald RA et al (1998) Clinical, radiological, neurophysiological, and neuropathological characteristics of gluten ataxia. Lancet 352(9140):1582–1585

    Article  CAS  PubMed  Google Scholar 

  • Hadjivassiliou M, Maki M et al (2006) Autoantibody targeting of brain and intestinal transglutaminase in gluten ataxia. Neurology 66(3):373–377

    Article  CAS  PubMed  Google Scholar 

  • Hadjivassiliou M, Aeschlimann P et al (2008) Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase. Ann Neurol 64(3):332–343

    Article  CAS  PubMed  Google Scholar 

  • Hadjivassiliou M, Sanders DS et al (2010) Gluten sensitivity: from gut to brain. Lancet Neurol 9(3):318–330

    Article  CAS  PubMed  Google Scholar 

  • Hitomi K, Horio Y et al (2001) Analysis of epidermal-type transglutaminase (TGase 3) expression in mouse tissues and cell lines. Int J Biochem Cell Biol 33(5):491–498

    Article  CAS  PubMed  Google Scholar 

  • Jeitner TM, Bogdanov MB et al (2001) N(epsilon)-(gamma-L-glutamyl)-L-lysine (GGEL) is increased in cerebrospinal fluid of patients with Huntington’s disease. J Neurochem 79(5):1109–1112

    Article  CAS  PubMed  Google Scholar 

  • Keresztessy Z, Csosz E et al (2006) Phage display selection of efficient glutamine-donor substrate peptides for transglutaminase 2. Protein Sci 15(11):2466–2480

    Article  CAS  PubMed  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4(2):140–156

    Article  CAS  PubMed  Google Scholar 

  • Molberg O, McAdam SN et al (1998) Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 4(6):713–717

    Article  CAS  PubMed  Google Scholar 

  • Nemes Z, Fesus L et al (2001) N(epsilon)(gamma-glutamyl)lysine in cerebrospinal fluid marks Alzheimer type and vascular dementia. Neurobiol Aging 22(3):403–406

    Article  CAS  PubMed  Google Scholar 

  • Piper JL, Gray GM et al (2002) High selectivity of human tissue transglutaminase for immunoactive gliadin peptides: implications for celiac sprue. Biochemistry 41(1):386–393

    Article  CAS  PubMed  Google Scholar 

  • Qiao SW, Bergseng E et al (2005) Refining the rules of gliadin T cell epitope binding to the disease-associated DQ2 molecule in celiac disease: importance of proline spacing and glutamine deamidation. J Immunol 175(1):254–261

    CAS  PubMed  Google Scholar 

  • Sardy M, Karpati S et al (2002) Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med 195(6):747–757

    Article  CAS  PubMed  Google Scholar 

  • Shan L, Molberg O et al (2002) Structural basis for gluten intolerance in celiac sprue. Science 297(5590):2275–2279

    Article  CAS  PubMed  Google Scholar 

  • Shan L, Qiao SW et al (2005) Identification and analysis of multivalent proteolytically resistant peptides from gluten: implications for celiac sprue. J Proteome Res 4(5):1732–1741

    Article  CAS  PubMed  Google Scholar 

  • Sollid LM (2002) Coeliac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol 2(9):647–655

    Article  CAS  PubMed  Google Scholar 

  • Sollid LM, Molberg O et al (1997) Autoantibodies in coeliac disease: tissue transglutaminase—guilt by association? Gut 41(6):851–852

    Article  CAS  PubMed  Google Scholar 

  • Stamnaes J, Fleckenstein B et al (2008) The propensity for deamidation and transamidation of peptides by transglutaminase 2 is dependent on substrate affinity and reaction conditions. Biochim Biophys Acta 1784(11):1804–1811

    CAS  PubMed  Google Scholar 

  • Sugimura Y, Hosono M et al (2006) Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA. J Biol Chem 281(26):17699–17706

    Article  CAS  PubMed  Google Scholar 

  • Sulkanen S, Halttunen T et al (1998) Tissue transglutaminase autoantibody enzyme-linked immunosorbent assay in detecting celiac disease. Gastroenterology 115(6):1322–1328

    Article  CAS  PubMed  Google Scholar 

  • Szondy Z, Sarang Z et al (2003) Transglutaminase 2−/− mice reveal a phagocytosis-associated crosstalk between macrophages and apoptotic cells. Proc Natl Acad Sci USA 100(13):7812–7817

    Article  CAS  PubMed  Google Scholar 

  • Towler DA, Gordon JI et al (1988) The biology and enzymology of eukaryotic protein acylation. Annu Rev Biochem 57:69–99

    Article  CAS  PubMed  Google Scholar 

  • Vader LW, de Ru A et al (2002a) Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J Exp Med 195(5):643–649

    Article  CAS  PubMed  Google Scholar 

  • Vader W, Kooy Y et al (2002b) The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology 122(7):1729–1737

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the Research Council of Norway, Sheffield Hospital Charitable Trust (grant number 7877) and Coeliac UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorunn Stamnaes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stamnaes, J., Dorum, S., Fleckenstein, B. et al. Gluten T cell epitope targeting by TG3 and TG6; implications for dermatitis herpetiformis and gluten ataxia. Amino Acids 39, 1183–1191 (2010). https://doi.org/10.1007/s00726-010-0554-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0554-y

Keywords

Navigation