Skip to main content
Log in

Tyrosinase and catechol oxidase activity of copper(I) complexes supported by imidazole-based ligands: structure–reactivity correlations

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Four new imidazole-based ligands, 4-((1H-imidazol-4-yl)methyl)-2-phenyl-4,5-dihydrooxyzole (L OL 1), 4-((1H-imidazol-4-yl)methyl)-2-(tert-butyl)-4,5-dihydrooxyzole (L OL 2), 4-((1H-imidazol-4-yl)methyl)-2-methyl-4,5-dihydrooxyzole (L OL 3), and N-(2,2-dimethylpropylidene)-2-(1-trityl-1H-imidazol-4-yl-)ethyl amine (L imz 1), have been synthesized. The corresponding copper(I) complexes [Cu(I)(L OL 1)(CH3CN)]PF6 (CuL OL 1), [Cu(I)(L OL 2)(CH3CN)]PF6 (CuL OL 2), [Cu(I)(L OL 3)(CH3CN)]PF6 (CuL OL 3), [Cu(I)(L imz 1)(CH3CN)2]PF6 (CuL imz 1) as well as the Cu(I) complex derived from the known ligand bis(1-methylimidazol-2-yl)methane (BIMZ), [Cu(I)(BIMZ)(CH3CN)]PF6 (CuBIMZ), are screened as catalysts for the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC-H2) to 3,5-di-tert-butylquinone (3,5-DTBQ). The primary reaction product of these oxidations is 3,5-di-tert-butylsemiquinone (3,5-DTBSQ) which slowly converts to 3,5-DTBQ. Saturation kinetic studies reveal a trend of catalytic activity in the order CuL OL 3 ≈ CuL OL 1 > CuBIMZ > CuL OL 2 > CuL imz 1. Additionally, the catalytic activity of the copper(I) complexes towards the oxygenation of monophenols is investigated. As substrates 2,4-di-tert-butylphenol (2,4-DTBP-H), 3-tert-butylphenol (3-TBP-H), 4-methoxyphenol (4-MeOP-H), N-acetyl-l-tyrosine ethyl ester monohydrate (NATEE) and 8-hydroxyquinoline are employed. The oxygenation products are identified and characterized with the help of UV/Vis and NMR spectroscopy, mass spectrometry, and fluorescence measurements. Whereas the copper complexes with ligands containing combinations of imidazole and imine functions or two imidazole units (CuL imz 1 and CuBIMZ) are found to exhibit catalytic tyrosinase activity, the systems with ligands containing oxazoline just mediate a stoichiometric conversion. Correlations between the structures of the complexes and their reactivities are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 3
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2605

    Article  PubMed  CAS  Google Scholar 

  2. Rolff M, Schottenheim J, Decker H, Tuczek F (2011) Chem Soc Rev 40:4077–4098

    Article  PubMed  CAS  Google Scholar 

  3. Decker H, Schweikardt T, Tuczek F (2006) Angew Chem Int Ed 45:4546–4550

    Article  CAS  Google Scholar 

  4. Sánchez-Ferrer Á, Rodríguez-López JN, García-Cánovas F, García-Carmona F (1995) Biochim Biophys Acta 1247:1–11

    Article  PubMed  Google Scholar 

  5. Wu B (2014) Curr Top Med Chem 14:1425–1449

    Article  PubMed  CAS  Google Scholar 

  6. Simon JD, Peles D, Wakamatsu K, Ito S (2009) Pigment Cell Melanoma Res 22:563–579

    Article  PubMed  CAS  Google Scholar 

  7. Loizzo MR, Tundis R, Menichini F (2012) Compr Rev Food Sci Food Saf 11:378–398

    Article  CAS  Google Scholar 

  8. van Holde KE, Miller KI, Decker H (2001) J Biol Chem 276:15563–15566

    Article  PubMed  Google Scholar 

  9. Solem E, Tuczek F, Decker H (2016) Angew Chem 128:2934–2938

    Article  Google Scholar 

  10. Réglier M, Jorand C, Wagell B (1990) J Chem Soc Chem Commun 24:1752–1755

    Article  Google Scholar 

  11. Casella L, Gullotti M, Bartosek M, Pallanza G, Laurenti E (1991) J Chem Soc Chem Commun 18:1235–1237

    Article  Google Scholar 

  12. Battaini G, De Carolis M, Monzani E, Tuczek F, Casella L (2003) J Chem Soc Chem Commun 6:726–727

    Article  CAS  Google Scholar 

  13. Battaini G, Monzani E, Casella L, Lonardi E, Tepper AWJW, Canters GW, Bubacco L (2002) J Biol Chem 277:44606–44612

    Article  PubMed  CAS  Google Scholar 

  14. Palavicini P, Granata A, Monzani E, Casella L (2005) J Am Chem Soc 127:18031–18036

    Article  PubMed  CAS  Google Scholar 

  15. Spada A, Palavicini S, Monzani E, Bubacco L, Casella L (2009) Dalton Trans 2009:6468–6471

    Article  CAS  Google Scholar 

  16. Garcia-Bosch I, Company A, Frisch JR, Torrent-Sucarrat M, Cardellach M, Gamba I, Gìell M, Casella L, Que L Jr, Ribas X, Luis JM, Costas M (2010) Angew Chem Int Ed 49:2406–2409

    Article  CAS  Google Scholar 

  17. Mirica LM, Vance M, Rudd DJ, Hedman B, Hodgson KO, Solomon EI, Stack TDP (2005) Science 308:1890–1892

    Article  PubMed  CAS  Google Scholar 

  18. Op’t Holt BT, Vance MA, Mirica LM, Heppner DE, Stack TDP, Solomon EI (2009) J Am Chem Soc 131:6421–6438

  19. Rolff M, Schottenheim J, Peters G, Tuczek F (2010) Angew Chem Int Ed 49:6438–6442

    Article  CAS  Google Scholar 

  20. Hoffmann A, Citek C, Binder S. Goos A, Rübhausen M, Troeppner O, Ivanovic-Burmazovic I, Wasinger EC, Stack TDP, Herres-Pawlis S (2013) Angew Chem Int Ed 52:5398–5401

  21. Esguerra KVN, Fall Y, Lumb JP (2014) Angew Chem Int Ed 53:5877–5881

    Article  CAS  Google Scholar 

  22. Askari MS, Rodriguez-Solano LA, Proppe A, McAllister B, Lumb JP, Otterwaelder X (2015) Dalton Trans 44:12094–12097

    Article  PubMed  CAS  Google Scholar 

  23. Xu B, Lumb JP, Arndtsen BA (2015) Angew Chem Int Ed 54:4208–4211

    Article  CAS  Google Scholar 

  24. Esguerra KVN, Fall Y, Petijean L, Lumb JP (2014) J Am Chem Soc 136:7662–7668

    Article  PubMed  CAS  Google Scholar 

  25. Askari MS, Esguerra KVN, Lumb JP, Ottenwaelder X (2015) Inorg Chem 54:8665–8672

    Article  PubMed  CAS  Google Scholar 

  26. Huang Z, Kwon O, Esguerra KVN, Lumb JP (2015) Tetrahedron 71:5871–5885

    Article  CAS  Google Scholar 

  27. Hamann JN, Schneider R, Tuczek F (2015) J Coord Chem 68:3259–3271

    Article  CAS  Google Scholar 

  28. Schottenheim J, Gernert C, Herzigkeit B, Krahmer J, Tuczek F (2015) Eur J Inorg Chem 2015:3501–3511

    Article  CAS  Google Scholar 

  29. Hamann JN, Rolff M, Tuczek F (2015) Dalton Trans 44:3251–3258

    Article  PubMed  CAS  Google Scholar 

  30. Hamann JN, Tuczek F (2014) Chem Commun 50:2298–2300

    Article  CAS  Google Scholar 

  31. Schottenheim J, Fateeva N, Thimm W, Krahmer J, Tuczek F (2013) Z Allg Anorg Chem 8:1491–1497

    Article  CAS  Google Scholar 

  32. Rolff M, Hamann JN, Tuczek F (2011) Angew Chem 123:7057–7061

    Article  Google Scholar 

  33. Rolff M, Schottenheim J, Tuczek F (2010) J Coord Chem 63:2382–2399

    Article  CAS  Google Scholar 

  34. Rolff M, Tuczek F (2008) Angew Chem 120:2378–2381

    Article  Google Scholar 

  35. Braussaud N, Rüther T, Cavell KJ, Skelton BW, White AH (2001) Synthesis 4:626–632

    Article  Google Scholar 

  36. Kovalainen JT, Christiaans JAM, Kotisaari S, Laitinen JT, Männistö PT, Tuomisto L, Gynther J (1999) J Med Chem 42:1193–1202

    Article  PubMed  CAS  Google Scholar 

  37. Garibay PW (2011) US 2011/0166321 A1

  38. Kupfer R, Nagel M, Wuerthwein EU, Allmann R (1985) Chem Ber 118:3089–3104

    Article  CAS  Google Scholar 

  39. Sheldrick GM (2008) Acta Crystallogr Sect A Found Crystallogr 64:112–122

    Article  CAS  Google Scholar 

  40. Sheldrick GM (2015) Acta Crystallogr C 71:3–8

    Article  CAS  Google Scholar 

  41. Monzani E, Quinti L, Perotti A, Casella L, Gullotti M, Randaccio L, Geremia S, Nardin G, Faleschini P, Tabbi G (1998) Inorg Chem 37:553–562

    Article  PubMed  CAS  Google Scholar 

  42. Mukherjee J, Mukherjee R (2002) Inorg Chim Acta 337:429–438

    Article  CAS  Google Scholar 

  43. Nevesa A, Rossi LM, Bortoluzzi AJ, Szpoganicz B, Wiezbicki C, Schwingel E (2002) Inorg Chem 41:1788–1794

    Article  CAS  Google Scholar 

  44. Sénèque O, Campion M, Douziech B, Giorgi M, Rivière E, Journaux Y, Le Mest Y, Reinaud O (2002) Eur J Inorg Chem 8:2007–2014

    Article  Google Scholar 

  45. Rall J, Wanner M, Albrecht M, Hornung FM, Kaim W (1999) Chem Eur J 5:2802–2809

    Article  CAS  Google Scholar 

  46. Horner L, Geyer E (1965) Chem Ber 98:2016–2045

    Article  CAS  Google Scholar 

  47. Harmalker S, Jones SE, Sawyer DT (1983) Inorg Chem 22:2790–2794

    Article  CAS  Google Scholar 

  48. Stallings MD, Morrison MM, Sawyer DT (1981) Inorg Chem 20:2655–2660

    Article  CAS  Google Scholar 

  49. Gentschev P, Müller N, Krebs B (2000) Inorg Chim Acta 300:422–452

    Google Scholar 

  50. Zippel F, Ahlers F, Werner R, Haase W, Nolting HF, Krebs B (1996) Inorg Chem 35:3409–3419

    Article  PubMed  CAS  Google Scholar 

  51. Wegner R, Gottschaldt M, Görls H, Jäger EG, Klemm D (2000) Angew Chem 112:608–612

    Article  Google Scholar 

  52. Kao CH, Wie HH, Liu YH, Lee GH, Wang Y, Lee CJ (2001) J Inorg Biochem 84:171–178

    Article  PubMed  CAS  Google Scholar 

  53. Wegner R, Gottschaldt M, Görls H, Jäger EG, Klemm D (2001) Chem Eur J 7:2143–2157

    Article  PubMed  CAS  Google Scholar 

  54. Ackermann J, Meyer F, Kaifer E, Pritzkow H (2002) Chem Eur J 8:247–258

    Article  PubMed  CAS  Google Scholar 

  55. Manzur J, Garcia AM, Rivas V, Atria AM, Valenzuela J, Spodine E (1997) Polyhedron 16:2299–2301

    Article  CAS  Google Scholar 

  56. Jovanovic SV, Kónya K, Scaiano JC (1995) Can J Chem 73:1803–1810

    Article  CAS  Google Scholar 

  57. Bulkowski JE (1985) US patent 4545937

  58. Ramadan AEMM, Youssef S, Eissa H (2014) Int J Adv Res 2:116–130

    CAS  Google Scholar 

  59. Clayden J, Greeves N, Warren S (2012) Organic chemistry. Oxford University Press, Oxford

    Google Scholar 

  60. Nilges MJ, Swartz HM, Riley PA (1984) J Biol Chem 259:2446–2451

    PubMed  CAS  Google Scholar 

  61. Taylor SW, Molinski TF, Rzepecki LM, Waite JH (1991) J Nat Prod 54:918–922

    Article  PubMed  CAS  Google Scholar 

  62. Badger GM, Walker IS (1956) J Chem Soc, pp 122–126

  63. Zhu JH, Olmstead JA, Gray DG (1995) J Wood Chem Technol 15:43–64

    Article  CAS  Google Scholar 

  64. Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) J Biol Chem 281:8981–8990

    Article  PubMed  CAS  Google Scholar 

  65. Wilfer C, Liebhäuser P, Hoffmann A, Erdmann H, Grossmann O, Runtsch L, Paffenholz E, Schepper R, Dick R, Bauer M, Dürr M, Ivanovic-Burmazovic I, Herres-Pawlis S (2015) Chem Eur J 21:17639–17649

    Article  PubMed  CAS  Google Scholar 

  66. Palenik GJ (1964) Acta Cryst 17:687–695

    Article  CAS  Google Scholar 

  67. Walli A, Dechert S, Bauer M, Demeshko S, Meyer F (2014) Eur J Inorg Chem 2014:4660–4676

    Article  CAS  Google Scholar 

  68. Li J, Widlicka DW, Fichter K, Reed DP, Weisman GR, Wong EH, DiPasquale A, Heroux KJ, Golen JA, Reinhold AL (2010) Inorg Chim Acta 364:185–194

    Article  CAS  Google Scholar 

  69. Santagostini L, Gullotti M, Monzani E, Casella L, Dillinger R, Tuczek F (2000) Chem Eur J 6:519–522

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We express our gratitude to Deutsche Forschungsgemeinschaft (DFG), CAU Kiel and COST CM 1003 for support of this research. Thanks to Miriam Schehr for the introduction to operate with the Isolera One fabricated by Biotage, Marcel Dommaschk for the help measuring the fluorescence spectra and Michael Wendt for performing the XRPD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Tuczek.

Ethics declarations

Conflict of interest

Authors declare that there are no conflicts of interests.

Additional information

Dedicated to Prof. Dr. Edward I. Solomon in honor of the ACS Alfred Bader Award.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wendt, F., Näther, C. & Tuczek, F. Tyrosinase and catechol oxidase activity of copper(I) complexes supported by imidazole-based ligands: structure–reactivity correlations. J Biol Inorg Chem 21, 777–792 (2016). https://doi.org/10.1007/s00775-016-1370-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1370-y

Keywords

Navigation