Skip to main content
Log in

Tangent Lévy market models

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new class of models for the time evolution of the prices of call options of all strikes and maturities. We capture the information contained in the option prices in the density of some time-inhomogeneous Lévy measure (an alternative to the implied volatility surface), and we set this static code-book in motion by means of stochastic dynamics of Itô’s type in a function space, creating what we call a tangent Lévy model. We then provide the consistency conditions, namely, we show that the call prices produced by a given dynamic code-book (dynamic Lévy density) coincide with the conditional expectations of the respective payoffs if and only if certain restrictions on the dynamics of the code-book are satisfied (including a drift condition à la HJM). We then provide an existence result, which allows us to construct a large class of tangent Lévy models, and describe a specific example for the sake of illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bentata, A., Cont, R.: Mimicking the marginal distributions of a semimartingale. Technical report, 2009, http://arxiv.org/abs/0910.3992v2

  2. Buehler, H.: Expensive martingales. Quant. Finance 6, 207–218 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Carmona, R., Nadtochiy, S.: An infinite dimensional stochastic analysis approach to local volatility dynamic models. Commun. Stoch. Anal. 2, 109–123 (2008)

    MathSciNet  Google Scholar 

  4. Carmona, R., Nadtochiy, S.: Local volatility dynamic models. Finance Stoch. 13, 1–48 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carmona, R., Tehranchi, M.: Interest Rate Models: An Infinite Dimensional Stochastic Analysis Perspective. Springer, Berlin (2006)

    MATH  Google Scholar 

  6. Carr, P., Geman, H., Madan, D., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75, 305–332 (2002)

    Article  Google Scholar 

  7. Carr, P., Geman, H., Madan, D., Yor, M.: From local volatility to local Lévy models. Quant. Finance 4, 581–588 (2005)

    Article  MathSciNet  Google Scholar 

  8. Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Finance 2, 61–73 (1998)

    Google Scholar 

  9. Cont, R., da Fonseca, I., Durrleman, V.: Stochastic models of implied volatility surfaces. Econ. Notes 31, 361–377 (2002)

    Article  Google Scholar 

  10. Cont, R., da Fonseca, J.: Dynamics of implied volatility surfaces. Quant. Finance 2, 45–60 (2002)

    Article  MathSciNet  Google Scholar 

  11. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall/CRC, London/Boca Raton (2004)

    MATH  Google Scholar 

  12. Cont, R., Voltchkova, E.: Integro-differential equations for option prices in exponential Lévy models. Finance Stoch. 9, 299–325 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cousot, L.: Conditions on option prices for absence of arbitrage and exact calibration. J. Bank. Finance 31, 3377–3397 (2007)

    Article  Google Scholar 

  14. Davis, M.H.A., Hobson, D.G.: The range of traded option prices. Math. Finance 17, 1–14 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Derman, E., Kani, I.: Stochastic implied trees: arbitrage pricing with stochastic term and strike structure of volatility. Int. J. Theor. Appl. Finance 1, 61–110 (1998)

    Article  MATH  Google Scholar 

  16. Diestel, J., Uhl, J.: Vector Measures. American Mathematical Society, Providence (1979)

    Google Scholar 

  17. Dupire, B.: Pricing with a smile. Risk 7, 32–39 (1994)

    Google Scholar 

  18. Filipović, D., Tappe, S., Teichmann, J.: Term structure models driven by Wiener process and Poisson measures: existence and positivity. SIAM J. Financ. Math. 1, 523–554 (2010)

    Article  MATH  Google Scholar 

  19. Gyöngy, I.: Mimicking the one-dimensional marginal distributions of processes having an Itô differential. Probab. Theory Relat. Fields 71, 501–516 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jacod, J.: Une généralisation des semimartingales: les processus admettant un processus à accroissements indépendants tangent. In: Séminaire de Probabilités XVIII. Lecture Notes in Mathematics, vol. 1059, pp. 91–118. Springer, Heidelberg (1984)

    Google Scholar 

  21. Jacod, J., Protter, P.: Risk neutral compatibility with option prices. Finance Stoch. 14, 285–315 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jacod, J., Sadi, H.: Processus admettant un processus à accroissements indépendants: Cas général. In: Séminaire de Probabilités XXI. Lecture Notes in Mathematics, vol. 1247, pp. 479–514. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  23. Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes. Springer, Berlin (2003)

    MATH  Google Scholar 

  24. Kou, S.: A jump-diffusion model for option pricing. Manag. Sci. 48, 1086–1101 (2002)

    Article  MATH  Google Scholar 

  25. Kuo, H.: Gaussian Measures in Banach Spaces. Lecture Notes in Mathematics, vol. 463. Springer, Berlin (1975)

    MATH  Google Scholar 

  26. Laurent, J.P., Leisen, D.: Building a consistent pricing model from observed option prices. In: Avellaneda, M. (ed.) Collected Papers of the NYU Mathematical Finance Seminar II, pp. 216–238. World Scientific, Singapore (2000)

    Google Scholar 

  27. Lepingle, D., Mémin, J.: Sur l’intégrabilité uniforme des martingales exponentielles. Probab. Theory Relat. Fields 42, 175–203 (1978)

    MATH  Google Scholar 

  28. Madan, D., Seneta, E.: The variance gamma (V.G.) model for share market returns. J. Bus. 63, 511–524 (1990)

    Article  Google Scholar 

  29. Merton, R.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976)

    Article  MATH  Google Scholar 

  30. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  31. Protter, P.: Stochastic Integration and Differential Equations. Springer, Berlin (2005)

    Google Scholar 

  32. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  33. Schönbucher, P.: A market model for stochastic implied volatility. Philos. Trans. R. Soc. Lond. Ser. A 357, 2071–2092 (1999)

    Article  MATH  Google Scholar 

  34. Schweizer, M., Wissel, J.: Arbitrage-free market models for option prices: the multi-strike case. Finance Stoch. 12, 469–505 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Schweizer, M., Wissel, J.: Term structures of implied volatilities: absence of arbitrage and existence results. Math. Finance 18, 77–114 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Carmona.

Additional information

Partially supported by NSF Grant #180-6024.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmona, R., Nadtochiy, S. Tangent Lévy market models. Finance Stoch 16, 63–104 (2012). https://doi.org/10.1007/s00780-011-0158-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-011-0158-8

Keywords

Mathematics Subject Classification (2000)

JEL Classification

Navigation