Skip to main content
Log in

Solvent effect on cation–π interactions with Al3+

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Cation–π interactions are known to be one of the strongest noncovalent forces in the gas phase, but they rarely occur in a fully solvated environment. The present work used two different ab initio molecular dynamics-based approaches to describe the correlation between the strength of the cation–π interactions and the number of water molecules surrounding the cation. Five different complexes between an aluminum cation and different molecules containing aromatic rings were studied, and the degree of hydration of each complex was varied. Results indicated that cation–π interactions vanish when the aluminum cation is surrounded by more than three water molecules. The results also highlighted the influence of –OH ligands on the interaction strength.

Visualization of the cation–π interaction between the aromatic ring in phenylalanine and the Al3+ cation, together with the corresponding Wannier function centers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zatta P, Lucchini R, van Rensburg SJ, Taylor A (2003) Brain Res Bull 62:15–28

    Article  CAS  Google Scholar 

  2. Kawahara M (2005) J Alzheim Dis 8:171–181

    CAS  Google Scholar 

  3. Dougherty DA (1996) Science 271:163–168

    Article  CAS  Google Scholar 

  4. Ma JC, Dougherty DA (1997) Chem Rev 97:1303–1324

    Article  CAS  Google Scholar 

  5. Costanzo F, Valle RGDJ (2008) Phys Chem 112:12783–12789

    CAS  Google Scholar 

  6. Larrucea J (2009) Computational study of the effect of aluminum cation on aromatic amino acids (Ph.D. thesis). Euskal Herriko Unibertsitatea UPV/EHU, Donostia

  7. Larrucea J, Rezabal E, Marino T, Russo N, Ugalde JM (2010) J Phys Chem B 114:9017–9022

    Article  CAS  Google Scholar 

  8. CPMD Consortium (2001) CPMD v3.11.1, C. (revision A11). IBM Corporation/Max-Planck Institut, Stuttgart. http://www.cpmd.org

  9. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  10. Vanderbilt D (1990) Phys Rev B 41:7892–7895

    Article  Google Scholar 

  11. Laasonen K, Car R, Lee C, Vanderbilt D (1991) Phys Rev B 43:6796–6799

    Article  CAS  Google Scholar 

  12. Laasonen K, Pasquarello A, Car R, Lee C, Vanderbilt D (1993) Phys Rev B 47:10142–10153

    Article  CAS  Google Scholar 

  13. Car R, Parrinello M (1985) Phys Rev Lett 55:2471–2474

    Article  CAS  Google Scholar 

  14. Nosé SJ (1984) Chem Phys 81:511

    Google Scholar 

  15. Hoover WG (1985) Phys Rev A 31:1695

    Article  Google Scholar 

  16. Evans DJ, Holian BLJ (1985) Chem Phys 83:4069

    CAS  Google Scholar 

  17. Sprik M, Ciccotti GJ (1998) Chem Phys 109:7737–7744

    CAS  Google Scholar 

  18. Ciccotti G, Kaprai R, Vanden-Eijnden E (2006) Chem Phys Chem 6:1809

    Article  Google Scholar 

  19. Dunbar RC, Klippenstein SJ, Hrusak J, Stoeckigt D, Schwarz H (1996) J Am Chem Soc 118:5277

    Google Scholar 

  20. Larrucea J (2011) Phys Scr 84:045305

    Article  Google Scholar 

  21. Suipizi M, Carloni PJ (2000) Phys Chem B 104:10087

    Article  Google Scholar 

  22. Swaddle TW, Rosenqvist J, Yu P, Bylaska E, Philips BL, Casey WH (2005) Science 308:1450–1453

    Article  CAS  Google Scholar 

  23. Takashi Ikeda MH, Kimura TJ (2006) Chem Phys 124:074503–1

    Google Scholar 

  24. Bock CW, Markham GD, Katz AK, Glusker JP (2006) Theor Chem Acc 115:100–112

    Google Scholar 

  25. Sillanpää A, Päivärinta JT, Hotokka MJ, Rosenholm JB, Laasonen KJ (2001) Phys Chem 105:10111–10122

    Article  Google Scholar 

Download references

Acknowledgments

This research was mostly funded by Euskal Herriko Unibertsitatea (the University of the Basque Country), Gipuzkoako Foru Aldundia (the Provincial Government of Gipuzkoa), and Eusko Jaurlaritza (the Basque Government).

The calculations were performed using the Mare Nostrum supercomputer (PowerPC 970MP) at the Barcelona Supercomputing Center (Centro Nacional de Supercomputación), Juropa (Intel Xeon 5570) at the Jülich Supercomputing Center, and Arina (Itanium II) at the SGI/IZO-SGIker at the University of the Basque Country UPV/EHU.

I wish to acknowledge Prof. Jesus M. Ugalde and many people in NSC Jyväskylä, such as Dr. Jaakko Akola, Prof. Hannu Häkkinen, Prof. Robert van Leuwen, and Oleg O. Kit, for discussions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julen Larrucea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larrucea, J. Solvent effect on cation–π interactions with Al3+ . J Mol Model 18, 4349–4354 (2012). https://doi.org/10.1007/s00894-012-1433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1433-0

Keywords

Navigation