Skip to main content
Log in

Molecular dynamics simulation of coalescence kinetics and neck growth in laser additive manufacturing of aluminum alloy nanoparticles

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Laser additive manufacturing emerged as an advanced manufacturing process to fabricate components in a layered fashion by fusing the powder particles. This process is multifaceted and pivotal to understand the underlying physics of the coalescence of powder particles during the process, which impacts the structural and mechanical properties of the build component. In this study, a classical molecular dynamics (MD) model is developed for the coalescence of pre-alloyed aluminum alloy (AlSi10Mg) particles during the laser additive manufacturing process. The model is employed to investigate the neck growth and coalescence kinetics of different pairs of particle size with changing the laser energy density from 7 to 17 J/mm2. The simulation results reveal that the unevenly sized particles undergo complete coalescence as compared with even-sized particles, and the neck growth rate of AlSi10Mg particles increases with an increase in laser energy density. Based on the present investigation, it is established that the coalescence kinetics of the AlSi10Mg nanoparticles are governed by the surface and volume diffusion and the surface energy reduction during the joining of particles. This analysis will act as a guideline to design process parameters and quality control for the printing of new components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sahoo S, Chou K (2016) Phase field modeling of microstructure evolution of Ti-6Al-4V in electron beam additive manufacturing process. Addit Manuf 9:14–24

    CAS  Google Scholar 

  2. Nandy J, Sarangi H, Sahoo S (2018) Microstructure evolution of Al-Si-10Mg in direct metal laser sintering using phase field modeling. Adv Manuf 6:107–117

    Article  CAS  Google Scholar 

  3. Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57:133–164

    Article  CAS  Google Scholar 

  4. Rosenthal I, Stern A, Frage N (2014) Microstructure and mechanical properties of AlSi10Mg parts produced by the laser beam additive manufacturing (AM) technology. Metallogr Micro Anal 3:448–453

    Article  CAS  Google Scholar 

  5. Fathi P, Rafieazad M, Duan X, Mohammadi M, Nasiri AM (2019) On microstructure and corrosion behaviour of AlSi10Mg alloy with low surface roughness fabricated by direct metal laser sintering. Corros Sci 157:126–145

    Article  CAS  Google Scholar 

  6. Misra S, Hussain M, Gupta A, Kumar V, Kumar S, Das AK (2019) Fabrication and characteristics evaluation of direct metal laser sintered SiC particulate reinforced Ti6Al4V metal matrix composites. J Laser Appl 31:012005

    Article  CAS  Google Scholar 

  7. Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016) The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment. Mater Sci Eng A 667:139–146

    Article  CAS  Google Scholar 

  8. Fischer P, Romano V, Weber HP, Karapatis NP, Boillat E, Glardon R (2003) Sintering of commercially pure titanium powder with a Nd: YAG laser source. Acta Mater 51:1651–1662

    Article  CAS  Google Scholar 

  9. Sahoo S (2019) An approach toward multiscale modeling of direct metal laser sintering process. Met Powder Rep 74:72–76

    Article  Google Scholar 

  10. Nandy J, Yedla N, Gupta P, Sarangi H, Sahoo S (2019) Sintering of AlSi10Mg particles in direct metal laser sintering process: a molecular dynamics simulation study. Mater Chem Phys 236:p121803

    Article  CAS  Google Scholar 

  11. Herring C (1950) Effect of change of scale on sintering phenomena. J Appl Phys 21:301–303

    Article  CAS  Google Scholar 

  12. Zhu H (1996) Sintering processes of two nanoparticles: a study by molecular dynamics simulations. Philos Mag Lett 73:27–33

    Article  CAS  Google Scholar 

  13. Pan H, Ko SH, Grigoropoulos CP (2008) The solid-state neck growth mechanisms in low energy laser sintering of gold nanoparticles: a molecular dynamics simulation study. J Heat Transf 130:p092404

    Article  CAS  Google Scholar 

  14. Li Q, Wang M, Liang Y, Lin L, Fu T, Wei P, Peng T (2017) Molecular dynamics simulations of aggregation of copper nanoparticles with different heating rates. Physica E: Low-Dimens Syst Nanostruct 90:137–142

    Article  CAS  Google Scholar 

  15. Grammatikopoulos P, Cassidy C, Singh V, Benelmekki M, Sowwan M (2013) Coalescence behaviour of amorphous and crystalline tantalum nanoparticles: a molecular dynamics study. J Mater Sci 49:3890–3897

    Article  CAS  Google Scholar 

  16. Yang L, Gan X, Xu C, Lang L, Jian Z, Xiao S, Deng H, Li X, Tian Z, Hu W (2019) Molecular dynamics simulation of alloying during sintering of Li and Pb metallic nanoparticles. Comput Mater Sci 156:47–55

    Article  CAS  Google Scholar 

  17. Jiang S, Zhang Y, Gan Y, Chen Z, Peng H (2013) Molecular dynamics study of neck growth in laser sintering of hollow silver nanoparticles with different heating rates. J Phys D Appl Phys 46:335302

    Article  CAS  Google Scholar 

  18. Paul S, Mitra S, Roy D (2018) Molecular dynamics simulation study of neck growth in micro-selective laser sintering of copper nanoparticles. In: Dixit U, Kant R (eds) Simulations for design and manufacturing. Lecture notes on multidisciplinary industrial engineering. Springer, Singapore, pp 259–292

    Google Scholar 

  19. Yang S, Kim W, Cho M (2018) Molecular dynamics study on the coalescence kinetics and mechanical behavior of nanoporous structure formed by thermal sintering of cu nanoparticles. Int J Eng Sci 123:1–19

    Article  CAS  Google Scholar 

  20. Alimohammadi M, Fichthorn KA (2009) Molecular dynamics simulation of the aggregation of titanium dioxide nanocrystals: preferential alignment. Nano Lett 9:4198–4203

    Article  CAS  PubMed  Google Scholar 

  21. Henz BJ, Hawa T, Zachariah M (2009) Molecular dynamics simulation of the energetic reaction between Ni and Al nanoparticles. J Appl Phys 105:p124310

    Article  CAS  Google Scholar 

  22. Grammatikopoulos P, Cassidy C, Singh V, Sowwan M (2014) Coalescence-induced crystallisation wave in Pd nanoparticles. Sci Rep 4:p5779

    Article  CAS  Google Scholar 

  23. Moitra A, Kim S, Kim SG, Park SJ, German RM, Horstemeyer MF (2010) Investigation on sintering mechanism of nanoscale tungsten powder based on atomistic simulation. Acta Mater 58(11):3939–3951

    Article  CAS  Google Scholar 

  24. Sestito JM, Abdeljawad F, Harris TA, Wang Y, Roach A (2019) An atomistic simulation study of nanoscale sintering: the role of grain boundary misorientation. Comput Mater Sci 165:180–189

    Article  CAS  Google Scholar 

  25. Jeon J, Jiang S, Rahmani F, Nouranian S (2020) Molecular dynamics study of temperature and heating rate–dependent sintering of titanium nanoparticles and its influence on the sequent tension tests of the formed particle-chain products. J Nanopart Res 22(1):1–2

    Article  CAS  Google Scholar 

  26. Dieter GE, Bacon D (1986) Mechanical metallurgy, vol 3. McGraw-hill, New York

    Google Scholar 

  27. Ramos M, Ortiz-Jordan L, Hurtado-Macias A, Flores S, Elizalde-Galindo JT, Rocha C, Chianelli RR (2013) Hardness and elastic modulus on six-fold symmetry gold nanoparticles. Materials 6(1):198–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mordehai D, Lee SW, Backes B, Srolovitz DJ, Nix WD, Rabkin E (2011) Size effect in compression of single-crystal gold microparticles. Acta Mater 59(13):5202–5215

    Article  CAS  Google Scholar 

  29. Bian J, Zhang H, Niu X, Wang G (2018) Anisotropic deformation in the compressions of single crystalline copper nanoparticles. Crystals 8(3):116

    Article  CAS  Google Scholar 

  30. Gupta P, Pal S, Yedla N (2016) Molecular dynamics based cohesive zone modeling of Al (metal)–Cu50Zr50 (metallic glass) interfacial mechanical behavior and investigation of dissipative mechanisms. Mater Des 105:41–50

    Article  CAS  Google Scholar 

  31. Sahoo S (2017) Simulation study on rapid solidification of eutectic Al-Cu alloy: a molecular dynamics approach. Int J Comput Mater Sci Surf Eng 7:18–25

    Google Scholar 

  32. Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39:5566–5568

    Article  CAS  Google Scholar 

  33. Lennard-Jones JE (1931) Cohesion. Proc Phys Soc 43:461

    Article  CAS  Google Scholar 

  34. Sanga LV, Hoang VV, Hang NTT (2013) Molecular dynamics simulation of melting of fcc Lennard-Jones nanoparticles. Eur Phys J D 67(3):64–72

    Article  CAS  Google Scholar 

  35. Plimpton S, Crozier P, Thompson A (2007) LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia National Laboratories 18:43

  36. Panda BK, Sahoo S (2019) Thermo-mechanical modeling and validation of stress field during laser powder bed fusion of AlSi10Mg built part. Results Phys 12:1372–1381

    Article  Google Scholar 

  37. Samantaray M, Sahoo S, Thatoi DN (2019) Modeling of thermal and solidification behavior during laser additive manufacturing of AlSi10Mg alloy powders and its experimental validation. J Laser Appl 31:p032019

    Article  CAS  Google Scholar 

  38. Samantaray M, Sahoo S, Thatoi D (2018) Computational modeling of heat transfer and sintering behavior during direct metal laser sintering of AlSi10Mg alloy powder. C R Mecanique 346:1043–1054

    Article  Google Scholar 

  39. Kingery WD, Berg M (1995) Study of the initial stages of sintering solids by viscous flow, evaporation-condensation, and self-diffusion. J Appl Phys 26:1205–1212

    Article  Google Scholar 

  40. Liu HB, Jose-Yacaman M, Perez R, Ascencio JA (2003) Studies of nanocluster coalescence at high temperature. Appl Phys A Mater Sci Process 77:63–67

    Article  CAS  Google Scholar 

  41. Song P, Wen D (2010) Molecular dynamics simulation of the sintering of metallic nanoparticles. J Nanopart Res 12(3):823–829

    Article  CAS  Google Scholar 

  42. Mao Q, Ren Y, Luo KH, Li S (2015) Sintering-induced phase transformation of nanoparticles: a molecular dynamics study. J Phys Chem C 119(51):28631–28639

    Article  CAS  Google Scholar 

  43. Li Q, Fu T, Peng T, Peng X, Liu C, Shi X (2010) Coalescence of cu contacted nanoparticles with different heating rates: a molecular dynamics study. Inter J Modern Phys B 30:p1650212

    Article  CAS  Google Scholar 

  44. Fang ZZ (2010) Sintering of ultrafine and nanosized particles. Woodhead publishing series in metals and surface engineering, sintering of advanced materials. Woodhead Publishing, pp 434–473

  45. Delannay F (2015) Influence of dihedral angle and grain coordination on densification rate during intermediate and final sintering stages. J Am Ceram Soc 98(11):3469–3475

    Article  CAS  Google Scholar 

  46. Hirano K, Fujikawa S (1978) Impurity diffusion in aluminum. J Nucl Mater 69(1–2):564–566

    Article  Google Scholar 

  47. Raut JS, Bhagat RB, Fichthorn KA (1998) Sintering of aluminum nanoparticles: a molecular dynamics study. Nanostruct Mater 10(5):837–851

    Article  CAS  Google Scholar 

  48. Zhou L, Dayananda MA, Sohn YH (2017) Chapter 4: diffusion in multicomponent alloys, handbook of solid state diffusion. In: Paul A, Divinski SV (eds) Volume 1: diffusion fundamentals and techniques. Elsevier, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seshadev Sahoo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandy, J., Sahoo, S., Yedla, N. et al. Molecular dynamics simulation of coalescence kinetics and neck growth in laser additive manufacturing of aluminum alloy nanoparticles. J Mol Model 26, 125 (2020). https://doi.org/10.1007/s00894-020-04395-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04395-4

Keywords

Navigation