Skip to main content
Log in

Preparation of Ni/poly(1,5-diaminonaphthalene)-modified carbon paste electrode; application in electrocatalytic oxidation of formaldehyde for fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper deals with electrochemical oxidation of formaldehyde in alkaline solution with a new electrocatalytic system composed of carbon paste electrode coated with poly(1,5-diaminonaphthalene) (P-1,5-DAN) film containing incorporated Ni(II)/Ni(III) redox ions. The modifier layer of (P-1,5-DAN-Ni)(OH)2 at the electrode surface acts as a catalyst for the oxidation of formaldehyde in 0.1-M NaOH solution. Cyclic voltammetric and chronoamperometric experiments showed that the formaldehyde can be oxidized at the surface of Ni/P-1,5-DAN-modified carbon paste electrode. In cyclic voltammetry studies, the peak current of the oxidation of nickel hydroxide in the presence of formaldehyde increases and is followed by a decrease in the corresponding cathodic current. The rate constant (k) for the chemical reaction between the formaldehyde and nickel hydroxide has been evaluated by chronoamperometry method. This polymeric-modified electrode can oxidize the formaldehyde with high current density (over 7 mA cm−2). Thus, it can be a candidate as an anode for fuel cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murray RW (1984) Chemically modified electrodes in electroanalytical chemistry, volume 13. In: Bard AJ (ed) Marcel Decker, New York, p 191

  2. Nakabayashi Y, Yoshikawa H (2000) Anal Sci 16:609 doi: 10.2116/analsci.16.609

    Article  CAS  Google Scholar 

  3. Bu H-Z, Mikkelsen SR, English AM (1995) Anal Chem 67:4071 doi: 10.1021/ac00118a007

    Article  CAS  Google Scholar 

  4. Kalcher K, Kauffman JM, Wang J, Svancara I, Vytras K, Neuhold C, Yang Z (1995) Electroanalysis 7:1 doi: 10.1002/elan.1140070103

    Article  Google Scholar 

  5. Ojani R, Pournaghi-Azar MH (1995) Talanta 42:657 doi: 10.1016/0039-9140(94)01438-4

    Article  Google Scholar 

  6. Ojani R, Pournaghi-Azar MH (1999) J Solid State Electrochem 3:392

    Google Scholar 

  7. Ojani R, Pournaghi-Azar MH (2000) J Solid State Electrochem 4:75 doi: 10.1007/s100080050004

    Article  Google Scholar 

  8. Profeti D, Olivi P (2004) Electrochim Acta 49:4979 doi: 10.1016/j.electacta.2004.06.013

    Article  CAS  Google Scholar 

  9. Cataldi TRI, Desimoni E, Ricciardi G, Lelj F (1995) Electroanalysis 7:435 doi: 10.1002/elan.1140070506

    Article  CAS  Google Scholar 

  10. Liu SJ (2004) Electrochim Acta 49:3235 doi: 10.1016/j.electacta.2004.02.038

    Article  CAS  Google Scholar 

  11. Dryhrst G, McAllister DL (1984) In: Kissinger PT, Heinemann WR (eds) Laboratory techniques in electroanalytical chemistry. Marcel Dekker, New York, p 289

    Google Scholar 

  12. Almeida CMVB, Giannetti BF (2002) Electrochem Commun 4:985 doi: 10.1016/S1388-2481(02)00511-8

    Article  CAS  Google Scholar 

  13. Ciszewski A, Milczarek G (1997) J Electroanal Chem 426:125 doi: 10.1016/S0022-0728(96)04976-5

    Article  CAS  Google Scholar 

  14. Ciszewski A (1995) Electroanalysis 7:1132 doi: 10.1002/elan.1140071207

    Article  CAS  Google Scholar 

  15. Malinski T, Ciszewski A, Bennet J, Fish JR, Czuchajowski L (1991) J Electrochem Soc 138:2008 doi: 10.1149/1.2085915

    Article  CAS  Google Scholar 

  16. El-Shafei AA (1999) J Electroanal Chem 471:89 doi: 10.1016/S0022-0728(99)00235-1

    Article  CAS  Google Scholar 

  17. Abdel Rahim MA, Abdel Hameed RM, Khalil MW (2004) J Power Sources 134:160 doi: 10.1016/j.jpowsour.2004.02.034

    Article  CAS  Google Scholar 

  18. Yi Q, Zhang J, Huang W, Liu X (2007) Catal Commun 8:1017 doi: 10.1016/j.catcom.2006.10.009

    Article  CAS  Google Scholar 

  19. Manzanares MI, Pavese AG, Solis VM (1991) J Electroanal Chem 310:159 doi: 10.1016/0022-0728(91)85259-R

    Article  CAS  Google Scholar 

  20. Nishimura K, Kunimatsu K, Machida K, Enyo M (1989) J Electroanal Chem 260:181 doi: 10.1016/0022-0728(89)87109-8

    Article  CAS  Google Scholar 

  21. Yang H, Lu TH, Xue KH, Sun SG, Lu GQ, Chen SP, Mol J (1999) Catal A Chem (Kyoto) 144:315

    Article  CAS  Google Scholar 

  22. Ramanauskas R, Jurgaitiene I, Vaskelis A (1997) Electrochim Acta 42:191 doi: 10.1016/0013-4686(96)00143-0

    Article  CAS  Google Scholar 

  23. Yahikozawa K, Nishimura K, Kumazawa M, Tateishi N, Takasu Y, Yasuda K, Matsuda Y (1992) Electrochim Acta 37:453 doi: 10.1016/0013-4686(92)87035-X

    Article  CAS  Google Scholar 

  24. Pavese A, Solis V (1991) J Electroanal Chem 301:117 doi: 10.1016/0022-0728(91)85463-Y

    Article  CAS  Google Scholar 

  25. Villullas HM, Mattos-Costa FI, Nascente PAP, BulhÕes LOS (2004) Electrochim Acta 49:3909 doi: 10.1016/j.electacta.2004.01.079

    Article  CAS  Google Scholar 

  26. Santos MC, Bulhões LOS (2004) Electrochim Acta 49:1893

    Article  CAS  Google Scholar 

  27. Ojani R, Raoof JB, Salmani-Afagh P (2004) J Electroanal Chem 571:1 doi: 10.1016/j.jelechem.2004.03.032

    Article  CAS  Google Scholar 

  28. Hong SY, Park SM (2003) J Electrochem Soc 150:E360 doi: 10.1149/1.1580826

    Article  CAS  Google Scholar 

  29. Abdel-Azzem M, Yousef US, Pierre G (1998) Eur Polym J 34:819 doi: 10.1016/S0014-3057(97)00194-8

    Article  CAS  Google Scholar 

  30. Jackowska K, Bukowska J, Jamkowski M (1995) J Electroanal Chem 388:101 doi: 10.1016/0022-0728(95)03912-Z

    Article  Google Scholar 

  31. Abdel -Azzem M, Yousef US (1994) Synth Met 63:79 doi: 10.1016/0379-6779(94)90253-4

    Article  CAS  Google Scholar 

  32. Jin CS, Shim YB, Park SM (1995) Synth Met 69:561 doi: 10.1016/0379-6779(94)02569-K

    Article  CAS  Google Scholar 

  33. Fleischmann M, Korinek K, Pletcher D (1971) J Electroanal Chem 31:39 doi: 10.1016/S0022-0728(71)80040-2

    Article  CAS  Google Scholar 

  34. Visscher W, Barendrecht E (1983) J Electroanal Chem 154:69

    CAS  Google Scholar 

  35. Hahn F, Eden BB, Croissant MJ, Lamy C (1986) J. Electrochim Acta 31:335 doi: 10.1016/0013-4686(86)80087-1

    Article  CAS  Google Scholar 

  36. Oliva P, Leonard J, Laurent JF, Delmas C, Braconnier JJ, Figlarz M, Fievet F, Guibert AD (1982) J Power Sources 8:229 doi: 10.1016/0378-7753(82)80057-8

    Article  CAS  Google Scholar 

  37. Yevidal AD, Figlarz M (1987) J Appl Electrochem 17:589 doi: 10.1007/BF01084134

    Article  Google Scholar 

  38. Desilvestro J, Corrigan DA, Weaver MJ (1988) J Electrochem Soc 135:885 doi: 10.1149/1.2095818

    Article  CAS  Google Scholar 

  39. Barnard R, Randell CF (1983) J Appl Electrochem 13:89 doi: 10.1007/BF00615892

    Article  CAS  Google Scholar 

  40. Chen S-M, Wang C-H (2007) J Solid State Electrochem 11:581 doi: 10.1007/s10008-006-0202–3

    Article  CAS  Google Scholar 

  41. Ramanauskas R, Jurgaitiene I, Vaskelis A (1996) Electrochim Acta 41:191 doi: 10.1016/S0013-4686(96)90233-9

    Article  Google Scholar 

  42. Zhang X-G, Murakami Y, Yahikozawa K, Takasu Y (1996) Electrochim Acta 41:223 doi: 10.1016/0013-4686(95)00318-5

    Article  Google Scholar 

  43. Ciszewski A, Milczarek G (1999) J Electroanal Chem 469:18 doi: 10.1016/S0022-0728(99)00180-1

    Article  CAS  Google Scholar 

  44. Gao G-Y, Guo D-J, Li H-L (2006) J Power Sources 162:1094 doi: 10.1016/j.jpowsour.2006.07.057

    Article  CAS  Google Scholar 

  45. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications. Wiley, New York ch.12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ojani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ojani, R., Raoof, J.B. & Zavvarmahalleh, S.R.H. Preparation of Ni/poly(1,5-diaminonaphthalene)-modified carbon paste electrode; application in electrocatalytic oxidation of formaldehyde for fuel cells. J Solid State Electrochem 13, 1605–1611 (2009). https://doi.org/10.1007/s10008-008-0718-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0718-9

Keywords

Navigation