Skip to main content
Log in

The centenary of glass electrode: from Max Cremer to F. G. K. Baucke

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

More than 100 years passed since 1906 when M. Cremer has measured for the first time the emf which builds up when two aqueous solutions with different acidity or alkalinity are separated by a thin glass membrane and since 1909 when F. Haber and Z. Klemensiewicz have obtained acid–base titration curves with the help of this device, thereby developing the glass electrode (GE) as an analytical tool. Twenty years later рН measurements with GEs became one of the most frequently performed procedures in research and industrial laboratories, in medicine, biology, agriculture, etc. That happened thanks to the progress made in measuring techniques and also in the development of special glasses. The latter, in turn, was a consequence of studying the dependence of electrode properties of glasses on their composition. That also resulted in the development of glasses for GEs having sensitivities toward M+ ions (Nа+, K+, Аg+, etc.) and glasses for measuring redox potentials. The data on the properties of GEs accumulated in the twentieth of last century formed the sound basis of the theory of glass electrodes. B.P. Nikolskii’s thermodynamic ion exchange theory has gained general recognition since 1937. Nikolskii's equation is widely used for the description of behavior not only of GEs but also of other ion-selective electrodes. Two approaches are distinguished in the evolution of the theory: one that is based on the assumption on the non-ideality of a glass membrane (Izmailov et al., Lengyel et al., Schwabe et al., Eisenman, and others) and the other approach based on the concept of various ionogenic groups in glass and their dissociation (Nikolskii, Schultz, and their colleagues, later Buck and Morf). The understanding of the potential of a glass electrode as an interfacial potential was replaced by the idea of a membrane potential, i.e., a potential drop including two interfacial potential drops and two diffusion potentials (Eisenman, Nikolskii's school, Doremus, etc.). The equilibrium at the boundary which determines the interfacial potential specifies the boundary conditions for the diffusion potential. The electrode properties of the glasses (the extension and slope of electrode function, its selectivity, etc.) in many respects depend on the mobilities of ions and the mechanism of their transport in the glass. A deeper insight into the functioning of the glass electrode was achieved by studying concentration profiles of ions in the glass layers which were altered by interaction with a solution, especially in combination with studies of the chemical and electrochemical processes on the glass/solution boundary, the dynamics of the GE potential, and the other properties of the glass surface. Dr. F.G.K. Bauke has made a significant contribution to GE studies. Using high-resolution techniques (IBSCA and NRA) to study the glass surface, he was able to give the most detailed description of the surface layers in case of lithium silicate glass. He described the equilibrium at the glass/solution boundary as a dynamic equilibrium not only in terms of thermodynamics, but also of electrochemical kinetics. For the first time in the literature of GEs, he has pointed to the electrochemical mechanism of formation of the GE potential as a consequence of charge division at the boundary (the dissociation mechanism). His activity in the field crowns the century with dignity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here and later, we will designate the alkali metal of glass as Me, but the same or other one from solution as M+.

  2. Karl Horovitz (1892–1958) became Lark-Horovitz when he married Betty Lark in 1926. Since 1929 till 1958, he was head of the Physics Department of Purdue University, USA.

  3. The term “simple” theory did not appear before the main theoretical concepts had been developed in the generalized theory (1945–1953) considered later.

  4. The paper [65] was the most cited Nikolskii’s work outside Russia. So some time, the reference to [65] has been omitted by many authors because of his world-famous equation type (Eq. 1). It is worth noting that the equation was derived, its experimental testing [66, 67] was made at Leningrad University, and respective papers were ready as early as in 1934, but in 1935, Nikolskii and his family, as many other Leningrad intellectuals, was subjected to repression and forwarded to exile in the city of Saratov. The papers [6467] were represented by Saratov University.

  5. From the point of view of electrochemical kinetics, in the H+-function region exchange current densities \( i_{{{\text{H}}^{ + }}}^0 > i_{\text{Na}}^0 \), in the Na+ function region \( i_{{{\text{H}}^{ + }}}^0 < i_{\text{Na}}^0 \).

  6. In [83] an empirical equation is quoted under this name, which was derived neither by Nikolskii nor Eisenman.

  7. The formulae were reported in 1945, but involvement of Nikolskii in the Soviet atom project hindered the publication.

  8. The Lark-Horovitz Eq. 3 could be recast to this form.

  9. The integration was made in [99], and stepwise curves were described, when the vacations and defects were taken in account for the phase boundary potential, but for diffusion potential, free ions moving over interstitials were assumed (see also [9, 10]).

  10. For review of this topics till 1974, see also [9].

References

  1. Scholz F (2010) J Solid State Electrochem. doi:10.1007/s10008-009-0962-7

  2. Cremer M (1906) Z Biol 47:562

    CAS  Google Scholar 

  3. Haber F, Klemensiewicz Z (1909) Z Phys Chem 67:385

    CAS  Google Scholar 

  4. Dole M (1941) The glass electrode. Methods, applications, and theory. Wiley, New York

    Google Scholar 

  5. Pchelin VA (1941) Izmerenie aktivnosti vodorodnikh ionov steklyannim electrodom (Measurement of H+ ion activity by glass electrode). Gizlegprom, Moskva-Leningrad

    Google Scholar 

  6. Eisenman G (ed) (1967) Glass electrodes for hydrogen and other cations. Principles and practice. Dekker, New York

    Google Scholar 

  7. Bates R (1964) Determination of pH. Theory and practice. Wiley, New York

    Google Scholar 

  8. Galster H (1991) pH-Measurement. Fundamentals, methods, applications, instrumentation. VCH, Weinheim

    Google Scholar 

  9. Lakshminarayanaiah N (1976) Membrane electrodes. Academic, New York

    Google Scholar 

  10. Morf WE (1981) The principle of ion-selective electrodes and of membrane transport. Akadémiai Kiadó, Budapest

    Google Scholar 

  11. Baucke FGK (2000) Electrochemistry of solid glasses. In: Bach H, Baucke F, Krause D (eds) Electrochemistry of glasses and glass melts, including glass electrodes. Springer, Berlin, pp 35–268

    Google Scholar 

  12. Baucke FGK (2008) Glass electrode. Dissociation mechanism (mechanism of response of the glass electrode). In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical dictionary. Berlin, Springer, pp 306–309

    Google Scholar 

  13. Piosik R, Jansen W, Peper R (1993) CLB—Chemie in Labor und Biotechnik 44:501–573

    Google Scholar 

  14. Piosik R, Jansen W, Peper R (1997) Zur Geschichte der Erfindung der Glaselektrode durch Fritz Haber und Zygmunt Klemensiewicz und Vorarbeiten durch Max Cremer. In: Gerhard Pohl W (ed) Naturwissenschaften und Politik. Trauner, Linz, pp 11–23

    Google Scholar 

  15. Haber F, Fleischmann F (1907) Z anorg Chem 51:245

    CAS  Google Scholar 

  16. Freundlich H, Rona P (1920) Sitz Ber Preussischen Akad Wiss 397–402

  17. Brown WEL (1924) J Sci Instrum 2:12

    CAS  Google Scholar 

  18. Hughes WS (1922) J Am Chem Soc 44:2860

    CAS  Google Scholar 

  19. Horovitz K (1923) Z Physik 15:369

    CAS  Google Scholar 

  20. Schiller H (1924) Ann Phys 74:105

    CAS  Google Scholar 

  21. Quittner F (1928) Ann Phys 85:745

    CAS  Google Scholar 

  22. Isard JO (1967) The dependence of glass electrode properties on composition. In: Eisenman G (ed) Glass electrodes for hydrogen and other cations. Dekker, New York, pp 51–100

    Google Scholar 

  23. Hughes WS (1928) J Chem Soc London 491–506

  24. MacInnes DA, Dole M (1929) Ind Eng Chem Anal Ed 1:57

    CAS  Google Scholar 

  25. MacInnes DA, Dole M (1930) J Am Chem Soc 52:29

    CAS  Google Scholar 

  26. Sokolov SI, Passinskii AG (1932) Z Phys Chem A 160:366

    Google Scholar 

  27. Avseevich GP (1949) Ucheniye Zapiski Leningr Univ No 108:3

    Google Scholar 

  28. Avseevich GP (1951) Ucheniye Zapiski Leningr Univ No 150:50

    Google Scholar 

  29. Cary HH, Baxter WP (1949) US Patent No 2462843

  30. Perley GA (1948) US Patent No 2444845

  31. Perley GA (1949) Anal Chem 21:395

    Google Scholar 

  32. Lengyel B, Blum E (1934) Trans Faraday Soc 30:461

    CAS  Google Scholar 

  33. Schultz MM, Ovchinnikova TM (1954) Vestnik Leningr Univ Ser Math Fiz Khim No 2:129

    Google Scholar 

  34. Schultz MM, Aio LG (1955) Vestnik Leningr Univ Ser Math Fiz Khim No 8:153

    Google Scholar 

  35. Nikolskii BP, Schultz MM, Peshekhonova NV (1958) Zh Fiz Khim 32:19

    Google Scholar 

  36. Nikolskii BP, Schultz MM, Peshekhonova NV (1958) Zh Fiz Khim 32:262

    CAS  Google Scholar 

  37. Eisenman G, Rudin DO, Casby JU (1957) Science 126:831

    CAS  Google Scholar 

  38. Eisenman G (1967) Particular properties of cation-selective glass electrodes containing Al2O3. In: Eisenman G (ed) Glass electrodes for hydrogen and other cations. Principles and practice. Dekker, New York, pp 268–283

    Google Scholar 

  39. Schultz MM, Dolidze VA, Sarukhanova EP, Bagaturova VA (1967) Avtorskoe svidetelstvo USSR (Patent) No 206023

  40. Leonard JE (1959) Beckman reprint R-6148

  41. Mattock G (1962) Analyst 87:930

    CAS  Google Scholar 

  42. Belyustin AA, Valova IV, Dolidze VA, Orlova GI, Sarukhanova EP, Siradze TsM, Schultz MM (1975) Svoistva stekol dlya natrii-spetsifichnykh steklyannikh elektrodov (The properties of glasses for Na+-selective GEs). In: Analiticheskoe priborostroenie. Metodi i pribori dlya analiza zhidkikh sred (Analytical instrument-making industry. Methods and devices for analysis of liquid media). Tbilisi 3:112

  43. Lengyel B, Vincze J (1940) Glastechn Ber 18:273

    CAS  Google Scholar 

  44. Belyustin AA, Pisarevskii AM, Lepnev GP, Sergeev AS, Schultz MM (1992) Sens Actuators B 10:61

    Google Scholar 

  45. Belyustin AA, Pisarevskii AM, Schultz MM, Nikolskii BP (1964) Dokl Akad Nauk USSR 154:404

    CAS  Google Scholar 

  46. Pisarevskii AM, Schultz MM, Nikolskii BP, Belyustin AA (1969) Dokl Akad Nauk USSR 187:364

    CAS  Google Scholar 

  47. Schultz MM, Pisarevskii AM, Polozova IP (1984) Okislitelnii potenzial. Teoriya i praktika Leningrad “Khimia” (Oxidation potential. Theory and practice Chemistry)

  48. Schultz MM, Pisarevskii AM, Kukushkina VA, Chudinova JA (1973) Elektrokhimia 9:211

    Google Scholar 

  49. Nikolaev JI, Pisarevskii AM, Schultz MM (1984) Elektrokhimia 20:739

    CAS  Google Scholar 

  50. Nikolskii BP, Materova EA (1985) Ion-Sel Electrode Rev 7:3

    CAS  Google Scholar 

  51. Schultz MM, Ershov OS, Lepnev GP, Grekovich TM, Sergeev AS (1979) Zh Prikl Khim 52:2487

    Google Scholar 

  52. Schultz MM, Sergeev AS, Pisarevskii AM, Lepnev GP, Tolstikov PM, Bagandova ED, Karasev IS (1986) Zh Prikl Khim 59:520

    Google Scholar 

  53. Trümpler G (1924) Z Electrochem 30:103

    Google Scholar 

  54. Trümpler G, Schuler D (1950) Helv Chim Acta 33:790

    Google Scholar 

  55. Schultz MM, Pisarevskii AM, Volkov SE (1981) Fiz Khim Stekla 7:426

    Google Scholar 

  56. Dugin GV, Pisarevskii AM, Polozova IP (1985) Khimia i tekhnologia vody 7:51

    CAS  Google Scholar 

  57. Dugin GV, Pisarevskii AM, Polozova IP (1986) Zh Prikl Khim 59:22

    CAS  Google Scholar 

  58. Pisarevskii AM, Polozova IP, Hawkridge FM (2005) Zh Prikl Khim 78:102, Rus J Appl Chem 78:101

    Google Scholar 

  59. Michaelis L (1926) Naturwissenschaften 14:33

    Google Scholar 

  60. Dole M (1931) J Am Chem Soc 53:4260

    CAS  Google Scholar 

  61. Lark-Horovitz K (1931) Nature 127:440

    CAS  Google Scholar 

  62. Lark-Horovitz K (1931) Naturwissenschaften 19:397

    CAS  Google Scholar 

  63. Dole M (1934) J Chem Phys 2:862

    CAS  Google Scholar 

  64. Nikolskii BP (1937) Zh Fiz Khim 10:495

    CAS  Google Scholar 

  65. Nikolskii BP (1937) Acta Phys-Chim USSR 7:597

    CAS  Google Scholar 

  66. Nikolskii BP, Tolmacheva TA (1937) Zh Fiz Khim 10:504

    CAS  Google Scholar 

  67. Nikolskii BP, Tolmacheva TA (1937) Zh Fiz Khim 10:510

    Google Scholar 

  68. Nikolskii BP, Schultz MM, Belyustin AA, Lev AA (1967) Recent developments in the ion-exchange theory of the glass electrode and its application in the chemistry of glass. In: Eisenman G (ed) Glass electrodes for hydrogen and other cations. Principles and practice. Dekker, New York, pp 174–222

    Google Scholar 

  69. Haugaard G (1937) Nature 140:66

    CAS  Google Scholar 

  70. Haugaard G (1941) J Phys Chem 45:148

    CAS  Google Scholar 

  71. Nikolskii BP, Materova EA (1951) Zh Fiz Khim 25:1335

    CAS  Google Scholar 

  72. Nikolskii BP (1957) Vestnik Leningr Univ Ser Fiz Khim No 16:69

    Google Scholar 

  73. Eisenman G (1967) The origin of the glass electrode potential. In: Eisenman G (ed) Glass electrodes for hydrogen and other cations. Principles and practice. Dekker, New York, pp 133–173

    Google Scholar 

  74. Schultz MM (1951) Issledovanie Na+ funktsii steklyannikh elektrodov (The study of Na+ -function of glass electrodes) PhD Thesis. Leningrad University.

  75. Schultz MM (1953) Ucheniye Zapiski Leningr Univ No 169:80

    Google Scholar 

  76. Nikolskii BP, Schultz MM, Peshekhonova NV (1959) Zh Fiz Khim 33:1922

    CAS  Google Scholar 

  77. Nikolskii BP, Schultz MM, Belyustin AA (1961) Dokl Akad Nauk 144:844

    Google Scholar 

  78. Eisenman G (1962) Biophys J 2:259

    CAS  Google Scholar 

  79. Izmailov NA, Vasil’ev AG (1956) Zh Fiz Khim 30:1500

    CAS  Google Scholar 

  80. Lundquist N (1955) Acta Chem Scand 9:595

    Google Scholar 

  81. Lengyel B, Csakvari B, Boksay Z (1960) Acta chem Acad Sci Hung 25:225

    CAS  Google Scholar 

  82. Schwabe K, Dahms H (1961) Z Electrochem 65:518

    CAS  Google Scholar 

  83. Kahlert H (2008) Nikolskii-Eisenman equation. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical dictionary. Springer, Berlin, p 449

    Google Scholar 

  84. Nikolskii BP (1953) Zh Fiz Khim 27:724

    CAS  Google Scholar 

  85. Nikolskii BP, Schultz MM, Peshekhonova NV, Belyustin AA (1961) Dokl Akad Nauk USSR 140:461

    Google Scholar 

  86. Nikolskii BP, Schultz MM (1962) Zh Fiz Khim 34:1327

    Google Scholar 

  87. Nikolskii BP, Schultz MM (1963) Vestnik Leningr Univ Ser Fiz Khim No 4:73

    Google Scholar 

  88. Nikolskii BP, Schultz MM, Belyustin AA (1963) Vestnik Leningr Univ Ser Fiz Khim No 4:86

    Google Scholar 

  89. Helfferich F (1962) Ion exchange. McGraw-Hill, New-York

    Google Scholar 

  90. Stephanova OK, Schultz MM, Materova EA, Nikolskii BP (1963) Vestnik Leningr Univ Ser Fiz Khim No 4:93

    Google Scholar 

  91. Doremus RH (1967) Diffusion potentials in glass. In: Eisenman G (ed) Glass electrodes for hydrogen and other cations. Principles and practice. Dekker, New York, pp 101–132

    Google Scholar 

  92. Karreman G, Eisenman G (1962) Bull Math Biophys 24:413

    Google Scholar 

  93. Schultz MM (1970) Dokl Akad Nauk USSR 194:377

    Google Scholar 

  94. Schultz MM, Stephanova OK (1971) Vestnik Leningr Univ Ser Fiz Khim No 4:22

    Google Scholar 

  95. Stephanova OK, Schultz MM (1972) Vestnik Leningr Univ Ser Fiz Khim No 4:80

    Google Scholar 

  96. Schultz MM, Stephanova OK (1976) Vestnik Leningr Univ Ser Fiz Khim No 4:88

    Google Scholar 

  97. Schultz MM (1978) Electrode properties of ion-exchange membranes and charge transport mechanism in them. In: Conference on ion-selective electrodes Budapest, 1977, pp 539–557

  98. Schultz MM, Belyustin AA (1984) J Electroanal Chem 180:395

    Google Scholar 

  99. Buck RP, Boles JH, Porter RD, Margolis GA (1974) Anal Chem 46:265

    Google Scholar 

  100. Belyustin AA, Schultz MM (1996) Ber Bunsenges Phys Chem 100:1508

    Google Scholar 

  101. Belyustin AA, Bagandova ED (1994) Sens Actuators B 18–19:387

    Google Scholar 

  102. Bagandova ED, Belyustin AA, Sergeev AS, Biryulina NB (1993) Zh Prikl Khim 66:1497

    CAS  Google Scholar 

  103. Jain V, Varshneya AK, Bihuniak PP (1989) J Amer Ceram Soc 72:843

    CAS  Google Scholar 

  104. SciGlass-6.7 (2007) Glass Property Information System. Shrewsbury Inst Theor Chem http://www.sciglass.info/

  105. Schultz MM, Belyustin AA (1962) Vestnik Leningr Univ Ser Fiz Khim No 4:135

    Google Scholar 

  106. Schultz MM, Belyustin AA (1962) Vestnik Leningr Univ Ser Fiz Khim No 16:116

    Google Scholar 

  107. Bouquet G, Dobos S, Boksay Z (1964) Ann Univ Sci Budapest 6:6

    Google Scholar 

  108. Belyustin AA (1987) Modern conceptions of the structure of surface layers of alkali silicate glasses interacting with solutions. In: Schultz MM, Grebentschikov RG (eds) Fizika i khimia silikatov (Silicate physics and chemistry). Nauka, Leningrad, pp 223–241

    Google Scholar 

  109. Scholze H (1991) Glass. Nature, structure, and properties. Springer, New York

    Google Scholar 

  110. Belyustin AA, Schultz MM (1983) Fiz Khim Stekla 9:3

    CAS  Google Scholar 

  111. Belyustin AA, Ivanovskaya IS (1989) Generalized description of glass leaching based on conception of ion interdiffusion enhanced by network hydrolysis. In: Proc XV Glass Congress, vol. 2a. Nauka, Leningrad, pp 136–141

  112. Buck RP (1968) J Electroanal Chem 18:363

    CAS  Google Scholar 

  113. Buck RP, Krull I (1968) J Electroanal Chem 18:387

    CAS  Google Scholar 

  114. Sandifer JR, Buck RP (1974) J Electroanal Chem Interfacial Electrochem 56:385

    CAS  Google Scholar 

  115. Brand MJD, Rechnitz JA (1969) Anal Chem 41:1788

    CAS  Google Scholar 

  116. Brand MJD, Rechnitz JA (1970) Anal Chem 42:304

    CAS  Google Scholar 

  117. Wikby A, Johansson G (1969) J Electroanal Chem Interfacial Electrochem 23:23

    CAS  Google Scholar 

  118. Wikby A (1971) J Electroanal Chem Interfacial Electrochem 33:145

    CAS  Google Scholar 

  119. Wikby A (1972) J Electroanal Chem Interfacial Electrochem 38:429

    CAS  Google Scholar 

  120. Wikby A (1972) J Electroanal Chem Interfacial Electrochem 39:103

    CAS  Google Scholar 

  121. Wikby A, Karlberg B (1974) Electrochim Acta 19:323

    CAS  Google Scholar 

  122. Wikby A (1975) Talanta 22:663

    CAS  Google Scholar 

  123. Wikby A (1974) Electrochim Acta 19:329

    CAS  Google Scholar 

  124. Wikby A (1974) Phys Chem Glasses 15:37

    CAS  Google Scholar 

  125. Boksay Z, Varga M, Wikby A (1975) J Non-Cryst Solids 17:349

    CAS  Google Scholar 

  126. Boksay Z, Rohonczy-Boksay E, Havas J (1989) On the most critical layer in the glass electrode membrane. In: 5th symposium on ion-selective electrodes, Matrafured, 1988. Pergamon Press Oxford, Akadémiai Kiadó Budapest, pp 321–328

  127. Kiprianov AA (1981) Issledovanie elektrodnikh processov na granitse ionoprovodyaschee steklo-rastvor (Study of electrode processes at the boundary of ion conductive glass/solution). PhD Thesis, Leningrad University

  128. Kiprianov AA, Pisarevskii AM, Belyustin AA, Kondrat’ev VV, Schultz MM (1979) Fiz Khim Stekla 5:476

    CAS  Google Scholar 

  129. Kiprianov AA, Pisarevskii AM, Belyustin AA, Schultz MM (1979) Fiz Khim Stekla 5:737

    CAS  Google Scholar 

  130. Moiseev VV, Permyakova TV, Plotnikova MN (1970) Glass Technol 11:6

    CAS  Google Scholar 

  131. Baucke FGK (1985) J Non-Cryst Solids 73:215

    CAS  Google Scholar 

  132. Kiprianov AA (1996) Fiz Khim Stekla 22:187, Glass Phys Chem 22: 141

    Google Scholar 

  133. Buck RP (1976) Anal Chem 48:23R

    CAS  Google Scholar 

  134. Belyustin AA (1980) Uspekhi Khimii 49:1880, Russ Chem Rev 49: 920

    CAS  Google Scholar 

  135. Rechnitz GA, Hameka GF (1965) Z Anal Chem 214:252

    CAS  Google Scholar 

  136. Johansson G, Norberg K (1968) J Electroanal Chem Interfacial Electrochem 18:239

    CAS  Google Scholar 

  137. Markovic PL, Osburn JO (1973) AIChE J 19:504

    CAS  Google Scholar 

  138. Belyustin AA, Valova IV, Ivanovskaya IS (1978) Glass electrode dynamics within the second and minutes range. In: Conference on ion-selective electrodes, Budapest, 1977, Akadémiae Kyadó Budapest, pp 235–244

  139. Belyustin AA, Valova IV (1980) Fiz Khim Stekla 6:449

    CAS  Google Scholar 

  140. Belyustin AA, Valova IV (1980) Fiz Khim Stekla 6:456

    CAS  Google Scholar 

  141. Stephanova OK, Pisarevskii AM, Belyustin AA, Bobrov VS, Lepnev GP, Schultz MM (2000) Vestnik Leningr Univ Ser Fiz Khim No 20:48

    Google Scholar 

  142. Schultz MM, Ivanovskaya IS (1967) Elektrokhimia 3:576

    Google Scholar 

  143. Ivanovskaya IS, Schultz MM (1968) Elektrokhimia 4:1045

    CAS  Google Scholar 

  144. Belyustin AA (1999) Electroanalysis 11:799

    CAS  Google Scholar 

  145. Ivanovskaya IS, Belyustin AA, Pozdnyakova ID (1995) Sens Actuators B 24–25:304

    Google Scholar 

  146. Belyustin AA, Schultz MM (1995) Glastechn Ber Glass Sci Technol 68(C1):309

    Google Scholar 

  147. Belyustin AA, Ivanovskaya IS, Bichiya KhL (1998) Sens Actuators B 48:485

    Google Scholar 

Download references

Acknowledgments

The author is very obliged to Dr. Irina S. Ivanovskaya for the useful discussion and the assistance and to Dr. Lyubov S. Bresler for corrections of his English.

The author is especially thankful to Professor Dr. Fritz Scholz; his editing made this paper easier understandable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatolii A. Belyustin.

Additional information

To Dr. F.G.K. Baucke, my old friend and best opponent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyustin, A.A. The centenary of glass electrode: from Max Cremer to F. G. K. Baucke. J Solid State Electrochem 15, 47–65 (2011). https://doi.org/10.1007/s10008-010-1105-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1105-x

Keywords

Navigation