Skip to main content
Log in

Structural improvement of ZnO electrodes through solution-processed routes for enhancing open-circuit voltage in dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We report herein one of our recent studies on nanostructured ZnO electrodes for application in dye-sensitized solar cells, focusing on achieving a higher open-circuit voltage (VOC). ZnO films were obtained through solution-processed routes including pyrolytic conversion of layered hydroxide zinc acetate (LHZA) films deposited on a fluorine-doped tin oxide-coated conducting glass substrate by a chemical bath deposition method. The morphology of the initial LHZA and the converted ZnO films was tuned from a thick (approximately 12 μm) flower bed-/lawn-like bilayer structure to a thin (1.2 μm) lawn-like quasi-monolayer structure by decreasing the Zn source concentration in the chemical bath. VOC was found to be enhanced with this morphological change from 0.692 (the bilayer structure) to 0.735 V (the quasi-monolayer structure). Fine tuning of the quasi-monolayer structure by introducing the grain growth effect led to VOC of the cell as high as 0.807 V, although a short-circuit photocurrent density (JSC) remained low. Further attempts were then made to increase JSC while maintaining the high VOC. When the thickness of the lawn-like monolayer film was increased up to approximately 5 μm, the resultant cell showed VOC = 0.750 V, JSC = 6.20 mA cm−2 and a conversion efficiency (η) of 2.83%. The film with a modified flower bed-/lawn-like bilayer structure approximately 11 μm in thickness finally yielded VOC = 0.741 V, JSC = 13.6 mA cm−2, and η = 5.44%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102(29):5566–5572

    Article  CAS  Google Scholar 

  2. Zhang J, Sun L, Yin J, Su H, Liao C, Yan C (2002) Control of ZnO morphology via a simple solution route. Chem Mater 14(10):4172–4177

    Article  CAS  Google Scholar 

  3. Song RQ, Xu AW, Deng B, Li Q, Chen GY (2007) From layered basic zinc acetate nanobelts to hierarchical zinc oxide nanostructures and porous zinc oxide nanobelts. Adv Funct Mater 17(2):296–306

    Article  CAS  Google Scholar 

  4. Hsu YF, Xi YY, Yip CT, Djurišić AB, Chan WK (2008) Dye-sensitized solar cells using ZnO tetrapods. J Appl Phys 103(8):083114

    Article  CAS  Google Scholar 

  5. Lin CY, Lai YH, Chen HW, Chen JG, Kung CW, Vittal R, Ho KC (2011) Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode. Energy Environ Sci 4(9):3448–3445

    Article  CAS  Google Scholar 

  6. Durán P, Capel F, Tartaj J, Moure C (2002) A strategic two-stage low-temperature thermal processing leading to fully dense and fine-grained doped-ZnO varistors. Adv Mater 14(2):137–141

    Article  Google Scholar 

  7. Pearton SJ, Ren F (2014) Advances in ZnO-based materials for light emitting diodes. Curr Opin Chem Eng 3:51–55

    Article  Google Scholar 

  8. Saito M, Fujihara S (2008) Large photocurrent generation in dye-sensitized ZnO solar cells. Energy Environ Sci 1(2):280–283

    Article  CAS  Google Scholar 

  9. Srikant V, Clarke DR (1998) On the optical band gap of zinc oxide. J Appl Phys 83(10):5447–5451

    Article  CAS  Google Scholar 

  10. Hagfeldt A, Grätzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95(1):49–68

    Article  CAS  Google Scholar 

  11. Tiwana P, Docampo P, Johnston MB, Snaith HJ, Herz LM (2011) Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano 5(6):5158–5166

    Article  CAS  PubMed  Google Scholar 

  12. He Y, Hu J, Xie Y (2015) High-efficiency dye-sensitized solar cells of up to 8.03% by air plasma treatment of ZnO nanostructures. Chem Commun 51(90):16229–16232

    Article  CAS  Google Scholar 

  13. Gonçalves AS, Davolos MR, Masaki N, Yanagida S, Morandeira A, Durrant JR, Freitas JN, Nogueira AF (2008) Synthesis and characterization of ZnO and ZnO:Ga films and their application in dye-sensitized solar cells. Dalton Trans (11):1487–1491

    Article  CAS  Google Scholar 

  14. Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44(20):6841–6851

    Article  CAS  PubMed  Google Scholar 

  15. Snaith HJ (2010) Estimating the maximum attainable efficiency in dye-sensitized solar cells. Adv Funct Mater 20(1):13–19

    Article  CAS  Google Scholar 

  16. Kumar A, Santangelo PG, Lewis NS (1992) Electrolysis of water at strontium titanate (SrTiO3) photoelectrodes: distinguishing between the statistical and stochastic formalisms for electron-transfer processes in fuel-forming photoelectrochemical systems. J Phys Chem 96(2):834–842

    Article  CAS  Google Scholar 

  17. Hagfeldt A, Lindquist SE, Grätzel M (1994) Charge carrier separation and charge transport in nanocrystalline junctions. Sol Energy Mater Sol Cells 32(3):245–257

    Article  CAS  Google Scholar 

  18. Keis K, Lindgren J, Lindquist S, Hagfeldt A (2000) Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes. Langmuir 16(10):4688–4694

    Article  CAS  Google Scholar 

  19. Kakiuchi K, Saito M, Fujihara S (2008) Fabrication of ZnO films consisting of densely accumulated mesoporous nanosheets and their dye-sensitized solar cell performance. Thin Solid Films 516(8):2026–2030

    Article  CAS  Google Scholar 

  20. Hosono E, Fujihara S, Kimura T, Imai H (2004) Growth of layered basic zinc acetate in methanolic solutions and its pyrolytic transformation into porous zinc oxide films. J Colloid Interface Sci 272(2):391–398

    Article  CAS  PubMed  Google Scholar 

  21. Kajihara H, Hagiwara M, Fujihara S (2016) Effect of orientation and density of hydroxide precursor films on performance of dye-sensitized ZnO solar cells. J Ceram Soc Jpn 124(6):673–677

    Article  CAS  Google Scholar 

  22. Kakiuchi K, Hosono E, Fujihara S (2006) Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719. J Photochem Photobiol A Chem 179(1-2):81–86

    Article  CAS  Google Scholar 

  23. Ueno S, Fujihara S (2011) Controlled synthesis of nanostructured ZnO films for use in dye-sensitized solar cells. J Electrochem Soc 158(1):K1–K5

    Article  CAS  Google Scholar 

  24. Nair PK, Nair MTS, García VM, Arenas OL, Peña Y, Castillo A, Ayala IT, Gomezdaza O, Sánchez A, Campos J, Hu H, Suárez R, Rincón ME (1998) Semiconductor thin films by chemical bath deposition for solar energy related applications. Sol Energy Mater Sol Cells 52(3-4):313–344

    Article  CAS  Google Scholar 

  25. Ueno S, Fujihara S (2011) Effect of an Nb2O5 nanolayer coating on ZnO electrodes in dye-sensitized solar cells. Electrochim Acta 56(7):2906–2913

    Article  CAS  Google Scholar 

  26. Bunker BC, Rieke PC, Tarasevich BJ, Campbell AA, Fryxell GE, Graff GL, Song L, Liu J, Virden JW, McVay GL (1994) Ceramic thin-film formation on functionalized interfaces through biomimetic processing. Science 264(5155):48–55

    Article  CAS  PubMed  Google Scholar 

  27. Kumar V, Singh N, Kumar V, Purohit LP, Kapoor A, Ntwaeaborwa OM, Swart HC (2013) Doped zinc oxide window layers for dye sensitized solar cells. J Appl Phys 114(13):134506

    Article  CAS  Google Scholar 

  28. Fujihara S, Sasaki C, Kimura T (2001) Crystallization behavior and origin of c-axis orientation in sol-gel-derived ZnO:Li thin films on glass substrates. Appl Surf Sci 180(3-4):341–350

    Article  CAS  Google Scholar 

  29. Hosono E, Fujihara S, Honma I, Zhou H (2005) The fabrication of an upright standing zinc oxide nanosheet for use in dye sensitized solar cells. Adv Mater 17(17):2091–2094

    Article  CAS  Google Scholar 

  30. Kim MG, Dahmen U, Searcy AW (1988) Shape and size of crystalline MgO particles formed by the decomposition of Mg(OH)2. J Am Ceram Soc 71(8):C-373–C-375

    Article  CAS  Google Scholar 

  31. Shi Y, Zhu C, Wang L, Zhao C, Li W, Fung KK, Ma T, Hagfeldt A, Wang N (2013) Ultrarapid sonochemical synthesis of ZnO hierarchical structures: from fundamental research to high efficiencies up to 6.42% for quasi-solid dye-sensitized solar cells. Chem Mater 25(6):1000–1012

    Article  CAS  Google Scholar 

  32. Ueno S, Fujihara S (2010) Influence of sintering behavior of ZnO nanoparticles on JV characteristics of ZnO-based dye-sensitized solar cells. Key Eng Mater 445:117–120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (E.T.) thanks the Kato Foundation for Promotion of Science for its financial support towards this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinobu Fujihara.

Electronic supplementary material

ESM 1

(PDF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, E., Nurdiwijayanto, L., Hagiwara, M. et al. Structural improvement of ZnO electrodes through solution-processed routes for enhancing open-circuit voltage in dye-sensitized solar cells. J Solid State Electrochem 22, 3119–3127 (2018). https://doi.org/10.1007/s10008-018-4024-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4024-x

Keywords

Navigation