Skip to main content

Advertisement

Log in

Promoting lithium-ion battery performance by application of crystalline cathodes LixMn1−zFezPO4

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

LiMnPO4 (LMP) is known as a typical cathode for application in lithium-ion-batteries (LIB), since this cathode produces higher voltage. However, the diffusivity of Li+ into LMP crystalline structure is not sufficiently high and its application accompanies a large energy waste due to hysteresis loss in the charge-discharge cycle. Therefore, in this work, it is intended to show that partial substitution of Mn with Fe, as a dopant to obtain a crystal with a general formula of LixMn1−zFezPO4 for application as a cathode in LIB, not only can increase the diffusivity of Li+ but also can improve other electrochemical properties of the resulting crystal, as a cathode, compared with pristine LMP or with similar cathodes such as LiFePO4 (LFP). To study the properties of this cathode, a multiscale procedure consisting of quantum mechanical (QM) approach at picoscale level and by recourse to density functional theory (DFT) calculations along with molecular dynamics(MD) simulation at the nanoscale level as well as pseudo-two-dimensional (P2D) electrochemical model at the macroscale level, the parameters affecting the performance of LIBs due to employing the cathodes LMP, LFP, and LixMn0.75Fe0.25PO4 (LMFP) are investigated and the obtained results, in comparison with the available experimental data are validated, justified, and interpreted. It is found that the cathode LMFP, if used as a cathode in a LIB, would results in higher efficiency and lower voltage drop compared with the commonly used cathode LMP as well as producing higher voltage power in comparison to LFP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\( {D}_{Li^{+}} \) :

Diffusion coefficient (cm2 s-1)

M w :

Molecular weight (g mol-1)

Q theo :

Theoretical capacity (mAh g-1)

ri(t):

Position of particle i at time t (Å)

a :

Interfacial area per volume of electrodes (m-1)

c :

Li+ concentration (mol m-3)

Eg :

Energy gap (eV)

G :

Gibbs free energy (eV)

H :

Enthalpy (eV)

I :

Current density (A m-2)

k i :

Rate constant (m s-1)

N :

Number of Li+ sites in the cathode

N 0 :

Avogadro constant

n i,j :

Number of electrons in f and d orbitals

R contact :

Contact resistance (ohm)

T :

Time (s)

U :

Coulomb interaction parameter (eV)

V :

Voltage (volt)

Α :

Transfer coefficients

I :

Current (A)

P :

Power (watt A-1)

T :

Temperature (K)

e :

Electron charges (c)

ϕ :

Electrode and electrolyte potentials (volt)

μ :

Chemical potential (eV)

F :

Faraday constant (c mol-1)

α:

Anodic and cathodic transfer coefficients

η :

Overpotential (volt)

ν :

System volume (m3)

σ :

Effective electronic conductivity (S m-1)

ĸ :

Ionic conductivity (S m-1)

S:

Solid electrode

l, e:

Liquid electrolyte

A:

Anode

C:

Cathode

eff:

Effective

ave:

Average

d:

Drop

max:

Maximum

OC:

Open circuit

References

  1. Duan J, Hu G, Cao Y et al (2016) Synthesis of high-performance Fe-Mg-co-doped LiMnPO4/C via a mechano-chemical liquid-phase activation technique. Ionics (Kiel) 22:609–619

    Article  CAS  Google Scholar 

  2. Fisher CAJ, Prieto VMH, Islam MS (2008) Lithium battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): insights into defect association, transport mechanisms, and doping behavior. Chem Mater 20:5907–5915

    Article  CAS  Google Scholar 

  3. Wang H, Zhang Z, Yang Y et al (2015) A Co-N-doped carbonized egg white as a high-performance, non-precious metal, electrocatalyst for oxygen reduction. J Solid State Electrochem 19:1727–1733

    Article  CAS  Google Scholar 

  4. Sun L, Wang C, Zhou Y et al (2014) Activated nitrogen-doped carbons from polyvinyl chloride for high-performance electrochemical capacitors. J Solid State Electrochem 18:49–58

    Article  CAS  Google Scholar 

  5. Zhao B, Zhang Z, Wang Y et al (2019) A novel type of multifunctional binder for improved cycle stability of lithium-sulfur battery. J Solid State Electrochem 23:1269–1278

    Article  CAS  Google Scholar 

  6. Zhou J, Jiang F, Li S et al (2019) CuFeS2 as an anode material with an enhanced electrochemical performance for lithium-ion batteries fabricated from natural ore chalcopyrite. J Solid State Electrochem 23:1991–2000

    Article  CAS  Google Scholar 

  7. Heubner C, Schneider M, Michaelis A (2018) Heat generation rates of NaFePO4 electrodes for sodium-ion batteries and LiFePO4 electrodes for lithium-ion batteries: a comparative study. J Solid State Electrochem 22:1099–1108

    Article  CAS  Google Scholar 

  8. Osmieri L, Monteverde Videla AHA, Specchia S (2016) The use of different types of reduced graphene oxide in the preparation of Fe-N-C electrocatalysts: capacitive behavior and oxygen reduction reaction activity in alkaline medium. J Solid State Electrochem 20:3507–3523

    Article  CAS  Google Scholar 

  9. Lanjan A, Ghalami Choobar B, Amjad-Iranagh S (2019) First principle study on the application of crystalline cathodes Li2Mn0.5TM0.5O3 for promoting the performance of lithium-ion batteries. Comput Mater Sci:109417

    Article  CAS  Google Scholar 

  10. Yang Y, Zhan F, Li H et al (2017) In situ Sn-doped WO3 films with enhanced photoelectrochemical performance for reducing CO2 into formic acid. J Solid State Electrochem 21:2231–2240

    Article  CAS  Google Scholar 

  11. Pu X, Zhao G, Ding F et al (2018) Facile synthesis of hierarchical porous Li2FeSiO4/C as highly stable cathode materials for lithium-ion batteries. J Solid State Electrochem 22:877–884

    Article  CAS  Google Scholar 

  12. Talebi-Esfandarani M, Rousselot S, Gauthier M et al (2016) LiFePO4 synthesized via melt synthesis using low-cost iron precursors. J Solid State Electrochem 20:1821–1829

    Article  CAS  Google Scholar 

  13. Yang J, Li Y, Mi H et al (2018) Enhanced electrocatalytic performance of Fe-TiO2/N-doped graphene cathodes for rechargeable Li-O2 batteries. J Solid State Electrochem 22:909–917

    Article  CAS  Google Scholar 

  14. Li Z, Luo C, Wang C et al (2018) Effects of Nb substitution on structure and electrochemical properties of LiNi0.7Mn0.3O2 cathode materials. J Solid State Electrochem 22:2811–2820

    Article  CAS  Google Scholar 

  15. Yan G, Li X, Wang Z et al (2017) Fluorinated solvents for high-voltage electrolyte in lithium-ion battery. J Solid State Electrochem 21:1589–1597

    Article  CAS  Google Scholar 

  16. Guo T, Qin X, Hou L et al (2019) Waxberry-like hierarchical NiCo2O4-decorated carbon microspheres as efficient catalyst for Li-O2 batteries. J Solid State Electrochem 23:1359–1369

    Article  CAS  Google Scholar 

  17. Chen Y-Z, Li P, Zhao X et al (2017) One-step synthesis of nitrogen-doped porous carbon for supercapacitors utilizing KNO3 as an electrolyte. J Solid State Electrochem 21:171–181

    Article  CAS  Google Scholar 

  18. Liu T, Xia Q, Lu W et al (2015) A novel method of preparing LiMPO4-C nano particles with organic P source. Electrochim Acta 174:120–126

    Article  CAS  Google Scholar 

  19. Wu L, Lu J, Wei G et al (2014) Synthesis and electrochemical properties of xLiMn0.9Fe0.1PO4·yLi3V2(PO4)3/C composite cathode materials for lithium–ion batteries. Electrochim Acta 146:288–294

    Article  CAS  Google Scholar 

  20. Dai Z, Wang L, He X et al (2013) Morphology regulation of nano LiMn0.9Fe0.1PO4 by solvothermal synthesis for lithium ion batteries. Electrochim Acta 112:144–148

    Article  CAS  Google Scholar 

  21. Yi H, Hu C, Fang H et al (2011) Optimized electrochemical performance of LiMn0.9Fe0.1−xMgxPO4/C for lithium ion batteries. Electrochim Acta 56:4052–4057

    Article  CAS  Google Scholar 

  22. Liu L, Chen G, Du B et al (2017) Nano-sized cathode material LiMn0.5Fe0.5PO4/C synthesized via improved sol-gel routine and its magnetic and electrochemical properties. Electrochim Acta 255:205–211

    Article  CAS  Google Scholar 

  23. Shiratsuchi T, Okada S, Doi T, Yamaki J (2009) Cathodic performance of LiMn1−xMxPO4 (M = Ti, Mg and Zr) annealed in an inert atmosphere. Electrochim Acta 54:3145–3151

    Article  CAS  Google Scholar 

  24. Martha SK, Markovsky B, Grinblat J et al (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156:A541

    Article  CAS  Google Scholar 

  25. Hautier G, Jain A, Ong SP et al (2011) Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations. Chem Mater 23:3495–3508

    Article  CAS  Google Scholar 

  26. Yamada A, Hosoya M, Chung SC et al (2003) Olivine-type cathodes: achievements and problems. J Power Sources 119–121:232–238

    Article  CAS  Google Scholar 

  27. Liang C, Longo RC, Kong F et al (2017) Obstacles toward unity efficiency of LiNi1-2xCoxMnxO2 (x = 0 ∼ 1/3) (NCM) cathode materials: insights from ab initio calculations. J Power Sources 340:217–228

    Article  CAS  Google Scholar 

  28. Liu Q, Liu W, Li D et al (2015) LiFe1-x(Ni0.98Co0.01Mn0.01)xPO4/C (x = 0.01, 0.03, 0.05, 0.07) as cathode materials for lithium-ion batteries. Electrochim Acta 184:143–150

    Article  CAS  Google Scholar 

  29. Duan J, Wu C, Cao Y et al (2016) Enhanced electrochemical performance and thermal stability of LiNi0.80Co0.15Al0.05O2 via nano-sized LiMnPO4 coating. Electrochim Acta 221:14–22

    Article  CAS  Google Scholar 

  30. Li F, Sun YY, Yao ZH et al (2015) Enhanced initial coulombic efficiency of Li1.14Ni0.16Co0.08Mn0.57O2 cathode materials with superior performance for lithium-ion batteries. Electrochim Acta 182:723–732

    Article  CAS  Google Scholar 

  31. Ramar V, Saravanan K, Gajjela SR et al (2013) The effect of synthesis parameters on the lithium storage performance of LiMnPO4/C. Electrochim Acta 105:496–505

    Article  CAS  Google Scholar 

  32. Zong J, Liu X (2014) Graphene nanoplates structured LiMnPO4/C composite for lithium-ion battery. Electrochim Acta 116:9–18

    Article  CAS  Google Scholar 

  33. Hou Y, Chang K, Tang H et al (2019) Drastic enhancement in the rate and cyclic behavior of LiMn2O4 electrodes at elevated temperatures by phosphorus doping. Electrochim Acta 319:587–595

    Article  CAS  Google Scholar 

  34. Yi H, Hu C, Fang H et al (2011) Optimized electrochemical performance of LiMn0.9Fe 0.1-xMgxPO4/C for lithium ion batteries. Electrochim Acta 56:4052–4057

    Article  CAS  Google Scholar 

  35. Hu C, Yi H, Fang H et al (2010) Improving the electrochemical activity of LiMnPO4 via Mn-site co-substitution with Fe and Mg. Electrochem Commun 12:1784–1787

    Article  CAS  Google Scholar 

  36. Liu S, Fang H, Dai E et al (2014) Effect of carbon content on properties of LiMn0.8Fe 0.19Mg0.01PO4/C composite cathode for lithium ion batteries. Electrochim Acta 116:97–102

    Article  CAS  Google Scholar 

  37. Jang D, Palanisamy K, Yoon J et al (2013) Crystal and local structure studies of LiFe0.48Mn 0.48Mg0.04PO4 cathode material for lithium rechargeable batteries. J Power Sources 244:581–585

    Article  CAS  Google Scholar 

  38. Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J Phys Condens Matter 9:767–808

    Article  CAS  Google Scholar 

  39. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  40. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  41. Clark SJ, Segall MD, Pickard CJ et al (2005) First principles methods using CASTEP. Zeitschrift fur Krist 220:567–570

    CAS  Google Scholar 

  42. Segall MD, Lindan PJD, Probert MJ et al (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744

    Article  CAS  Google Scholar 

  43. Gao Y, Wang X, Ma J et al (2015) Selecting substituent elements for Li-rich Mn-based cathode materials by density functional theory (DFT) calculations. Chem Mater 27:3456–3461

    Article  CAS  Google Scholar 

  44. Goodenough JB, Park K (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    Article  CAS  PubMed  Google Scholar 

  45. Yuan LX, Wang ZH, Zhang WX et al (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4:269–284

    Article  CAS  Google Scholar 

  46. Jambrina PG, Aldegunde J (2016) Computational tools for the study of biomolecules. Elsevier

  47. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393

    Article  CAS  Google Scholar 

  48. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  CAS  Google Scholar 

  49. Sun H (1998) The COMPASS force field: parameterization and validation for phosphazenes. Comput Theor Polym Sci 8:229–246

    Article  CAS  Google Scholar 

  50. Sneha P, George Priya Doss C (2016) Molecular dynamics. In: Advances in protein chemistry and structural biology, 1st ed. Elsevier Inc, pp 181–224

  51. Yang J, Ren Y, Tian A, Sun H (2000) COMPASS force field for 14 inorganic molecules, He, Ne, Ar, Kr, Xe, H 2 , O 2 , N 2 , NO, CO, CO 2 , NO 2 , CS 2 , and SO 2 , in liquid phases. J Phys Chem B 104:4951–4957

    Article  CAS  Google Scholar 

  52. Doyle M (1993) Modeling of Galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc 140:1526

    Article  CAS  Google Scholar 

  53. Fuller TF, Doyle M, Newman J (1994) Simulation and optimization of the dual lithium ion insertion cell. J Electrochem Soc 141:1–10

    Article  CAS  Google Scholar 

  54. Rajabloo B, Jokar A, Désilets M, Lacroix M (2017) An inverse method for estimating the electrochemical parameters of lithium-ion batteries. J Electrochem Soc 164:A99–A105

    Article  CAS  Google Scholar 

  55. Doyle M, Newman J (1995) The use of mathematical modeling in the design of lithium/polymer battery systems. Electrochim Acta 40:2191–2196

    Article  CAS  Google Scholar 

  56. Doyle M (1996) Comparison of modeling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc 143:1890

    Article  Google Scholar 

  57. Nyman A, Zavalis TG, Elger R et al (2010) Analysis of the polarization in a Li-ion battery cell by numerical simulations. J Electrochem Soc 157:A1236

    Article  CAS  Google Scholar 

  58. Doyle M, Fuentes Y (2003) Computer simulations of a Lithium-ion polymer battery and implications for higher capacity next-generation battery designs. J Electrochem Soc 150:A706

    Article  CAS  Google Scholar 

  59. Tang M, Carter WC, Chiang Y-M (2010) Electrochemically driven phase transitions in insertion electrodes for Lithium-ion batteries: examples in lithium metal phosphate olivines. Annu Rev Mater Res 40:501–529

    Article  CAS  Google Scholar 

  60. Liu C, Neale ZG, Cao G (2016) Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 19:109–123

    Article  CAS  Google Scholar 

  61. Dickinson EJF, Ekström H, Fontes E (2014) COMSOL Multiphysics®: finite element software for electrochemical analysis. A mini-review. Electrochem commun 40:71–74

    Article  CAS  Google Scholar 

  62. Amestoy PR, Duff IS, L’Excellent JY (2000) Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput Methods Appl Mech Eng 184:501–520

    Article  Google Scholar 

  63. Ghalami Choobar B, Modarress H, Halladj R, Amjad-Iranagh S (2019) Multiscale investigation on electrolyte systems of [(solvent + additive) + LiPF 6 ] for application in Lithium-ion batteries. J Phys Chem C 123:21913–21930

    Article  CAS  Google Scholar 

  64. Milović M, Jugović D, Cvjetićanin N et al (2013) Crystal structure analysis and first principle investigation of F doping in LiFePO4. J Power Sources 241:70–79

    Article  CAS  Google Scholar 

  65. Andersson AS, Kalska B, Häggström L, Thomas JO (2000) Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Moessbauer spectroscopy study. Solid State Ionics 130:41–52

    Article  CAS  Google Scholar 

  66. Dinh HC, Mho SI, Kang Y, Yeo IH (2013) Large discharge capacities at high current rates for carbon-coated LiMnPO4 nanocrystalline cathodes. J Power Sources 244:189–195

    Article  CAS  Google Scholar 

  67. Wang D, Wu X, Wang Z, Chen L (2005) Cracking causing cyclic instability of LiFePO4 cathode material. J Power Sources 140:125–128

    Article  CAS  Google Scholar 

  68. Li G, Azuma H, Tohda M (2002) LiMnPO4 as the cathode for Lithium batteries. Electrochem Solid-State Lett 5:A135

    Article  CAS  Google Scholar 

  69. Prosini PP (2005) Modeling the voltage profile for LiFePO4. J Electrochem Soc 152:A1925

    Article  CAS  Google Scholar 

  70. Ferguson J (1961) Crystal spectra of metal coordination compounds. IV. Bis-acetylacetonato- copper (II). J Chem Phys 34:1609–1613

    Article  CAS  Google Scholar 

  71. Roothaan CCJ (1951) New developments in molecular orbital theory. Rev Mod Phys 23:69–89

    Article  CAS  Google Scholar 

  72. Orgel LE (1963) Ligand-field theory. Endeavour 22:42–47

    Article  CAS  Google Scholar 

  73. Masquelier C, Croguennec L (2013) Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 113(8):6552–6591

    Article  CAS  PubMed  Google Scholar 

  74. Zhou F, Cococcioni M, Kang K, Ceder G (2004) The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn, co, Ni. Electrochem Commun 6:1144–1148

    Article  CAS  Google Scholar 

  75. Amine K, Yasuda H, Yamachi M (1999) Olivine LiCoPO[sub 4] as 4.8 V electrode material for lithium batteries. Electrochem Solid-State Lett 3:178

    Article  Google Scholar 

  76. Rousse G, Rodriguez-Carvajal J, Patoux S, Masquelier C (2003) Magnetic structures of the triphylite LiFePO4 and of its delithiated form FePO4. Chem Mater 15:4082–4090

    Article  CAS  Google Scholar 

  77. Miao L, Wu J, Jiang J, Liang P (2013) First-principles study on the synergistic mechanism of SnO2 and graphene as a lithium ion battery anode. J Phys Chem C 117:23–27

    Article  CAS  Google Scholar 

  78. Molenda J, Kulka A, Milewska A, Zając W, Świerczek K (2013) Structural, transport and electrochemical properties of liFePO4 substituted in lithium and iron sublattices (Al, Zr, W, Mn, Co and Ni). Materials (Basel) 6(5):1656–1687

    Article  CAS  Google Scholar 

  79. Dong Y, Zhao Y, Duan H, Liang Z (2014) Enhanced electrochemical performance of LiMnPO4 by Li +-conductive Li3VO4 surface coatings. Electrochim Acta 132:244–250

    Article  CAS  Google Scholar 

  80. Wang Y, Yang Y, Yang Y, Shao H (2010) Enhanced electrochemical performance of unique morphological LiMnPO4 / C cathode material prepared by solvothermal method. Solid State Commun 150:81–85

    Article  CAS  Google Scholar 

  81. Gao F, Tang Z (2008) Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochim Acta 53:5071–5075

    Article  CAS  Google Scholar 

  82. Zhu Y, Wang C (2011) Strain accommodation and potential hysteresis of LiFePO4 cathodes during lithium ion insertion/extraction. J Power Sources 196:1442–1448

    Article  CAS  Google Scholar 

  83. Moškon J, Pivko M, Gaberšček M (2016) Basic electrochemical performance of pure LiMnPO4: a comparison with selected conventional insertion materials. Acta Chim Slov 63(3):459–469

    Article  PubMed  CAS  Google Scholar 

  84. Ashwin TR, Chung YM, Wang J (2016) Capacity fade modelling of lithium-ion battery under cyclic loading conditions. J Power Sources 328:586–598

    Article  CAS  Google Scholar 

  85. Doyle M, Newman J, Gozdz AS et al (1996) Comparison of modeling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc 143:1890–1903

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Amjad-Iranagh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 883 kb)

ESM 2

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanjan, A., Ghalami Choobar, B. & Amjad-Iranagh, S. Promoting lithium-ion battery performance by application of crystalline cathodes LixMn1−zFezPO4. J Solid State Electrochem 24, 157–171 (2020). https://doi.org/10.1007/s10008-019-04480-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04480-6

Keywords

Navigation