Skip to main content

Advertisement

Log in

Divergence in Forest-Type Response to Climate and Weather: Evidence for Regional Links Between Forest-Type Evenness and Net Primary Productivity

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Climate change is altering long-term climatic conditions and increasing the magnitude of weather fluctuations. Assessing the consequences of these changes for terrestrial ecosystems requires understanding how different vegetation types respond to climate and weather. This study examined 20 years of regional-scale remotely sensed net primary productivity (NPP) in forests of the northern Lake States to identify how the relationship between NPP and climate or weather differ among forest types, and if NPP patterns are influenced by landscape-scale evenness of forest-type abundance. These results underscore the positive relationship between temperature and NPP. Importantly, these results indicate significant differences among broadly defined forest types in response to both climate and weather. Essentially all weather variables that were strongly related to annual NPP displayed significant differences among forest types, suggesting complementarity in response to environmental fluctuations. In addition, this study found that forest-type evenness (within 8 × 8 km2 areas) is positively related to long-term NPP mean and negatively related to NPP variability, suggesting that NPP in pixels with greater forest-type evenness is both higher and more stable through time. This is landscape- to subcontinental-scale evidence of a relationship between primary productivity and one measure of biological diversity. These results imply that anthropogenic or natural processes that influence the proportional abundance of forest types within landscapes may influence long-term productivity patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Bai YF, Han XG, Wu JG, Chen ZZ, Li LH. 2004. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431:181–4.

    Article  PubMed  CAS  Google Scholar 

  • Baldocchi DD, Black TA, Curtis PS, Falge E, Fuentes JD, Granier A, Gu L, Knohl A, Pilegaard K, Schmid HP, Valentini R, Wilson K, Wofsy S, Xu L, Yamamoto S. 2005. Predicting the onset of net carbon uptake by deciduous forests with soil temperature and climate data: a synthesis of FLUXNET data. Int J Biometeorol 49:377–87.

    Article  PubMed  Google Scholar 

  • Barr AG, Black TA, Hogg EH, Kljun N, Morgenstern K, Nesic Z. 2004. Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agric For Meteorol 126:237–55.

    Article  Google Scholar 

  • Barr AG, Black TA, Hogg EH, Griffis TJ, Morgenstern K, Kljun N, Theede A, Nesic Z. 2007. Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003. Glob Change Biol 13:561–76.

    Article  Google Scholar 

  • Boisvenue C, Running SW. 2006. Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Glob Change Biol 12:862–82.

    Article  Google Scholar 

  • Bradford JB, Lauenroth WK, Burke IC, Paruelo JM. 2006. The influence of climate, soils, weather, and land use on primary production and biomass seasonality in the US Great Plains. Ecosystems 9:934–50.

    Article  Google Scholar 

  • Cao MK, Prince SD, Shugart HH. 2002. Increasing terrestrial carbon uptake from the 1980s to the 1990s with changes in climate and atmospheric CO2. Glob Biogeochem Cycles 16.

  • Cao MK, Prince SD, Li KR, Tao B, Small J, Shao XM. 2003. Response of terrestrial carbon uptake to climate interannual variability in China. Glob Change Biol 9:536–46.

    Article  Google Scholar 

  • Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ. 2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci USA 104:18123–8.

    Article  PubMed  CAS  Google Scholar 

  • Carrer M, Nola P, Eduard JL, Motta R, Urbinati C. 2007. Regional variability of climate-growth relationships in Pinus cembra high elevation forests in the Alps. J Ecol 95:1072–83.

    Article  Google Scholar 

  • Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S. 2000. Consequences of changing biodiversity. Nature 405:234–42.

    Article  PubMed  CAS  Google Scholar 

  • Chhin S, Hogg EH, Lieffers VJ, Huang S. 2008. Influences of climate on the radial growth of lodgepole pine in Alberta. Botany 86:167–78.

    Article  Google Scholar 

  • Chuixiang Y et al. 2010. Climate control of terrestrial carbon exchange across biomes and continents. Environ Res Lett 5:034007.

    Article  Google Scholar 

  • Cleland DT, Freeouf JA, Keys JE, Nowacki GJ, Carpenter CA, McNab WH. 2007. Ecological subregions: sections and subsections for the conterminous United States. Gen. Tech. Report WO-76D [Map on CD-ROM] (A.M. Sloan, cartographer). Washington, DC: U.S. Department of Agriculture, Forest Service, presentation scale 1:3,500,000; colored.

  • Cottingham KL, Brown BL, Lennon JT. 2001. Biodiversity may regulate the temporal variability of ecological systems. Ecol Lett 4:72–85.

    Article  Google Scholar 

  • Curtis PS, Hanson PJ, Bolstad P, Barford C, Randolph JC, Schmid HP, Wilson KB. 2002. Biometric and Eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agric For Meteorol 113:3–19.

    Article  Google Scholar 

  • Delcourt HR, Delcourt PA. 2000. Eastern deciduous forests. In: Barbour MG, Billings WD, Eds. North American terrestrial vegetation. Cambridge: Cambridge University Press. p 357–95.

    Google Scholar 

  • Diaz S, Lavorel S, de Bello F, Quetier F, Grigulis K, Robson M. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–9.

    Article  PubMed  CAS  Google Scholar 

  • Elmqvist T, Folke C, Nystrom M, Peterson G, Bengtsson J, Walker B, Norberg J. 2003. Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–94.

    Article  Google Scholar 

  • Franklin J. 2010. Moving beyond static species distribution models in support of conservation biogeography. Divers Distrib 16:321–30.

    Article  Google Scholar 

  • Frelich LE. 1995. Old forest in the Lake States today and before European settlement. Nat Areas J 15:157–67.

    Google Scholar 

  • Friedman SK, Reich PB. 2005. Regional legacies of logging: departure from presettlement forest conditions in northern Minnesota. Ecol Appl 15:726–44.

    Article  Google Scholar 

  • Fritts HC. 1971. Dendroclimatology and dendroecology. Quat Res 1:419–49.

    Article  Google Scholar 

  • Fritts HC. 1976. Tree rings and climate. London: Academic Press.

    Google Scholar 

  • Givnish TJ. 1994. Does diversity beget stability. Nature 371:113–14.

    Article  Google Scholar 

  • Goetz SJ, Prince SD, Goward SN, Thawley MM, Small J. 1999a. Satellite remote sensing of primary production: an improved production efficiency modeling approach. Ecol Model 122:239–55.

    Article  Google Scholar 

  • Goetz SJ, Prince SD, Goward SN, Thawley MM, Small J, Johnston A. 1999b. Mapping net primary production and related biophysical variables with remote sensing: application to the BOREAS region. J Geophys Res Atmos 104:27719–34.

    Article  Google Scholar 

  • Goetz SJ, Prince SD, Small J, Gleason ACR. 2000. Interannual variability of global terrestrial primary production: results of a model driven with satellite observations. J Geophys Res Atmos 105:20077–91.

    Article  Google Scholar 

  • Gough CM, Vogel CS, Schmid HP, Curtis PS. 2008. Controls on annual forest carbon storage: lessons from the past and predictions for the future. Bioscience 58:609–22.

    Article  Google Scholar 

  • Gower ST, Vogel JG, Norman JM, Kucharik CJ, Steele SJ, Stow TK. 1997. Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. J Geophys Res Atmos 102:29029–41.

    Article  CAS  Google Scholar 

  • Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Wang C. 2001. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol Appl 11:1395–411.

    Article  Google Scholar 

  • Graumlich LJ. 1993. Response of tree growth to climatic variation in the mixed conifer and deciduous forests of the upper Great-Lakes region. Can J For Res 23:133–43.

    Article  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH. 1999. Plant diversity and productivity experiments in European grasslands. Science 286:1123–7.

    Article  PubMed  CAS  Google Scholar 

  • Hogg EH, Brandt JP, Kochtubajda B. 2002. Growth and dieback of Aspen forests in northwestern Alberta, Canada, in relation to climate and insects. Can J For Res 32:823–32.

    Article  Google Scholar 

  • Hogg EH, Brandt JP, Kochtubajda B. 2005. Factors affecting interannual variation in growth of western Canadian aspen forests during 1951–2000. Can J For Res 35:610–22.

    Article  Google Scholar 

  • Hooper DU, Vitousek PM. 1997. The effects of plant composition and diversity on ecosystem processes. Science 277:1302–5.

    Article  CAS  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35.

    Article  Google Scholar 

  • Huston MA. 1997. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–60.

    Article  Google Scholar 

  • IPCC. 2007. Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, Eds. Climate change 2007: The physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ives AR, Gross K, Klug JL. 1999. Stability and variability in competitive communities. Science 286:542–4.

    Article  PubMed  CAS  Google Scholar 

  • Karl TR, Meehl GA, Peterson TC, Kunkel KE, W.J. Gutowski J, Easterling DR. 2008. Executive summary. In: Karl TR, Meehl GA, Miller CD, Hassol SJ, Waple AM, Murray WL, Eds., Weather and Climate Extremes in a Changing Climate. Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC.

  • Kicklighter DW, Bondeau A, Schloss AL, Kaduk J, McGuire AD. 1999. Comparing global models of terrestrial net primary productivity (NPP): global pattern and differentiation by major biomes. Glob Change Biol 5:16–24.

    Article  Google Scholar 

  • Lehman CL, Tilman D. 2000. Biodiversity, stability, and productivity in competitive communities. Am Nat 156:534–52.

    Article  Google Scholar 

  • Lieth H, Lieth H, Whittaker RH. 1975. Modeling the primary productivity of the world. New York (NY): Springer. pp 237–63.

    Google Scholar 

  • Liu J, Chen JM, Cihlar J, Chen W. 2002. Net primary productivity mapped for Canada at 1-km resolution. Glob Ecol Biogeogr 11:115–29.

    Article  Google Scholar 

  • Lo YH, Blanco JA, Seely B, Welham C, Kimmins JP. 2010. Relationships between climate and tree radial growth in interior British Columbia, Canada. For Ecol Manag 259:932–42.

    Article  Google Scholar 

  • Loreau M. 2010. Linking biodiversity and ecosystems: towards a unifying ecological theory. Philos Trans Roy Soc B 365:49–60.

    Article  Google Scholar 

  • Loreau M, Hector A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–6.

    Article  PubMed  CAS  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, hector A, hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–8.

    Article  PubMed  CAS  Google Scholar 

  • McCann KS. 2000. The diversity-stability debate. Nature 405:228–33.

    Article  PubMed  CAS  Google Scholar 

  • McNaughton SJ. 1977. Diversity and stability of ecological communities—comment on the role of empiricism in ecology. Am Nat 111:515–25.

    Article  Google Scholar 

  • Mladenoff DJ, White MA, Pastor J, Crow TR. 1993. Comparing spatial pattern in unaltered old-growth and disturbed forest landscapes. Ecol Appl 3:294–306.

    Article  Google Scholar 

  • Naeem S. 2002. Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology 83:1537–52.

    Article  Google Scholar 

  • Naeem S, Li SB. 1997. Biodiversity enhances ecosystem reliability. Nature 390:507–9.

    Article  CAS  Google Scholar 

  • Naeem S, Wright JP. 2003. Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol Lett 6:567–79.

    Article  Google Scholar 

  • Novacek MJ, Cleland EE. 2001. The current biodiversity extinction event: scenarios for mitigation and recovery. Proc Natl Acad Sci USA 98:5466–70.

    Article  PubMed  CAS  Google Scholar 

  • Ott RL. 1993. An introduction to statistical methods and data analysis. Belmont (CA): Wadsworth Publishing Company.

    Google Scholar 

  • Pfisterer AB, Schmid B. 2002. Diversity-dependent production can decrease the stability of ecosystem functioning. Nature 416:84–6.

    Article  PubMed  CAS  Google Scholar 

  • Pimm SL. 1984. The complexity and stability of ecosystems. Nature 307:321–6.

    Article  Google Scholar 

  • Potter CS, Klooster S, Brooks V. 1999. Interannual variability in terrestrial net primary production: exploration of trends and controls on regional to global scales. Ecosystems 2:36–48.

    Article  Google Scholar 

  • Prince SD. 1991. A model of regional primary production for use with coarse resolution satellite data. Int J Remote Sens 12:1313–30.

    Article  Google Scholar 

  • Prince SD, Goward SN. 1995. Global primary production: a remote sensing approach. J Biogeogr 22:815–35.

    Article  Google Scholar 

  • Richardson AD, Hollinger DY, Dail DB, Lee JT, Munger JW, O’Keefe J. 2009. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol 29:321–31.

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig ML. 1968. Net primary production of terrestrial communities: prediction from climatological data. Am Nat 102:67–74.

    Article  Google Scholar 

  • Ruimy A, Kergoat L, Bondeau A. 1999. Comparing global models of terrestrial net primary productivity (NPP): analysis of differences in light absorption and light-use efficiency. Glob Change Biol 5:56–64.

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH. 2000. Biodiversity—global biodiversity scenarios for the year 2100. Science 287:1770–4.

    Article  PubMed  CAS  Google Scholar 

  • Schulte LA, Mladenoff DJ, Crow TR, Merrick LC, Cleland DT. 2007. Homogenization of northern U.S. Great Lakes forests due to land use. Landscape Ecol 22:1089–103.

    Article  Google Scholar 

  • Soule PT, Knapp PA. 2006. Radial growth rate increases in naturally occurring ponderosa pine trees: a late-20th century CO2 fertilization effect? New Phytol 171:379–90.

    Article  PubMed  Google Scholar 

  • Srivastava DS, Vellend M. 2005. Biodiversity-ecosystem function research: is it relevant to conservation? Annu Rev Ecol Evol Syst 36:267–94.

    Article  Google Scholar 

  • Symstad AJ, Chapin FS, Wall DH, Gross KL, Huenneke LF, Mittelbach GG, Peters DPC, Tilman D. 2003. Long-term and large-scale perspectives on the relationship between biodiversity and ecosystem functioning. Bioscience 53:89–98.

    Article  Google Scholar 

  • Tilman D, Downing JA. 1994. Biodiversity and stability in grasslands. Nature 367:363–5.

    Article  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E. 1997a. The influence of functional diversity and composition on ecosystem processes. Science 277:1300–2.

    Article  CAS  Google Scholar 

  • Tilman D, Lehman CL, Thomson KT. 1997b. Plant diversity and ecosystem productivity: theoretical considerations. Proc Natl Acad Sci USA 94:1857–61.

    Article  PubMed  CAS  Google Scholar 

  • USDA SCS. 1989. STATSGO Soil Maps. National Cartographic Center, Fort Worth, TX, USA.

  • White MA, Running SW, Thornton PE. 1999. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. Int J Biometeorol 42:139–45.

    Article  PubMed  Google Scholar 

  • Wyckoff PH, Bowers R. 2010. Response of the prairie-forest border to climate change: impacts of increasing drought may be mitigated by increasing CO2. J Ecol 98:197–208.

    Article  Google Scholar 

  • Yachi S, Loreau M. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96:1463–8.

    Article  PubMed  CAS  Google Scholar 

  • Zheng D, Prince S, Wright R. 2003. Terrestrial net primary production estimates for 0.5° grid cells from field observations—a contribution to global biogeochemical modeling. Glob Change Biol 9:46–64.

    Article  Google Scholar 

Download references

Acknowledgment

I am grateful to Anthony D’Amato, Shawn Fraver, Randy Kolka, Brian Palik and Matt Powers for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Bradford.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradford, J.B. Divergence in Forest-Type Response to Climate and Weather: Evidence for Regional Links Between Forest-Type Evenness and Net Primary Productivity. Ecosystems 14, 975–986 (2011). https://doi.org/10.1007/s10021-011-9460-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-011-9460-8

Keywords

Navigation