Skip to main content

Advertisement

Log in

Disentangling Effects of Time Since Fire, Overstory Composition and Organic Layer Thickness on Nutrient Availability in Canadian Boreal Forest

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Wildfire is the primary abiotic disturbance in the boreal forest, and its long-term absence can lead to large changes in ecosystem properties, including the availability and cycling of nutrients. These effects are, however, often confounded with the effects of successional changes in vegetation toward nutrient-conservative species. We studied a system of boreal forested lake islands in eastern Canada, where time since last fire ranged from 50 to 1500 years, and where the relative abundance of the most nutrient-conservative tree species, black spruce, was largely independent of time since last fire. This allowed us to disentangle the effects of time since fire and the dominant vegetation on ecosystem properties, including nutrient stocks and concentrations. Effects of time since fire independent of vegetation composition mostly involved an increase in the thickness of the organic layer and in nitrogen concentration in both soil and leaves. Domination by black spruce had strong negative effects on nutrient concentrations and was associated with a shift toward more fungi and Gram-positive bacteria in the soil microbial community. Path modeling showed that phosphorus concentration was inversely related to organic layer thickness, which was in turn related to both time since fire and black spruce abundance, while nitrogen was more directly related to time since fire and the composition of the overstory. We conclude that discriminating between the effects of vegetation and time since fire is necessary for better understanding and predicting the long-term changes that occur in forest nutrient availability and ecosystem properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Amiro BD, Cantin A, Flannigan MD, de Groot WJ. 2009. Future emissions from Canadian boreal forest fires. Can J For Res 39:383–95.

    Article  CAS  Google Scholar 

  • Anderson J, Domsch K. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–21.

    Article  CAS  Google Scholar 

  • Beck PS, Goetz SJ, Mack MC, Alexander HD, Jin Y, Randerson JT, Loranty M. 2011. The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Glob Change Biol 17:2853–66.

    Article  Google Scholar 

  • Bergeron Y. 1991. The influence of island and mainland lakeshore landscapes on boreal forest-fire regimes. Ecology 72:1980–92.

    Article  Google Scholar 

  • Bergeron Y. 2000. Species and stand dynamics in the mixed woods of Quebec’s southern boreal forest. Ecology 81:1500–16.

    Article  Google Scholar 

  • Bergeron Y, Dubuc M. 1989. Succession in the southern part of the Canadian boreal forest. Vegetatio 79:51–63.

    Article  Google Scholar 

  • Bergeron Y, Flannigan M, Gauthier S, Leduc A, Lefort P. 2004a. Past, current and future fire frequency in the Canadian boreal forest: implications for sustainable forest management. Ambio 33:356–60.

    Article  PubMed  Google Scholar 

  • Bergeron Y, Gauthier S, Flannigan M, Kafka V. 2004b. Fire regimes at the transition between mixedwood and coniferous boreal forest in Northwestern Quebec. Ecology 85:1916–32.

    Article  Google Scholar 

  • Bergeron Y, Drapeau P, Gauthier S, Lecomte N. 2007. Using knowledge of natural disturbances to support sustainable forest management in the northern Clay Belt. For Chron 83:326–37.

    Article  Google Scholar 

  • Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–17.

    Article  CAS  PubMed  Google Scholar 

  • Bond-Lamberty B, Wang CK, Gower ST. 2004. Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Glob Change Biol 10:473–87.

    Article  Google Scholar 

  • Brais S, Camiré C, Bergeron Y, Paré D. 1995. Changes in nutrient availability and forest floor characteristics in relation to stand age and forest composition in the southern part of the boreal forest of northwestern Quebec. For Ecol Manag 76:181–9.

    Article  Google Scholar 

  • Bray RH, Kurtz L. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–46.

    Article  CAS  Google Scholar 

  • Carter MR. 1993. Soil sampling and methods of analysis. Boca Raton: CRC Press.

    Google Scholar 

  • Carter MR. 2001. Soil sampling and methods of analysing. Boca Raton: Lewis publishers.

    Google Scholar 

  • Chen HYH, Popadiouk RV. 2002. Dynamics of North American boreal mixedwoods. Environ Rev 10:137–66.

    Article  Google Scholar 

  • Chin WW. 1998. The partial least squares approach to structural equation modeling. Mod Methods Bus Res 295:295–336.

    Google Scholar 

  • Crawford RMM, Jeffree CE, Rees WG. 2003. Paludification and forest retreat in northern oceanic environments. Ann Bot 91:213–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLuca T, Nilsson M-C, Zackrisson O. 2002. Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 133:206–14.

    Article  CAS  PubMed  Google Scholar 

  • Dixon RK, Brown S, Rea Houghton, Solomon A, Trexler M, Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science (Washington) 263:185–9.

    Article  CAS  Google Scholar 

  • Environment Canada. 2010. Canadian daily climate data. Downsview, ON: Environment Canada, National Meteorological Service.

    Google Scholar 

  • Fenton N, Lecomte N, Légaré S, Bergeron Y. 2005. Paludification in black spruce (Picea mariana) forests of eastern Canada: Potential factors and management implications. For Ecol Manag 213:151–9.

    Article  Google Scholar 

  • Flannigan MD, Logan KA, Amiro BD, Skinner WR, Stocks BJ. 2005. Future area burned in Canada. Clim Change 72:1–16.

    Article  CAS  Google Scholar 

  • Frazer GW, Canham CD, Lertzman KP. 1999. Gap light analyzer (GLA), version 2.0: imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation.: Copyright © 1999: Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Milbrook, New York.

  • Frostegård Å, Bååth E. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65.

    Article  Google Scholar 

  • Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, Freitas H, Golodets C. 2007. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann Bot 99:967–85.

    Article  PubMed  Google Scholar 

  • Gaxiola A, McNeill SM, Coomes DA. 2010. What drives retrogressive succession? Plant strategies to tolerate infertile and poorly drained soils. Funct Ecol 24:714–22.

    Article  Google Scholar 

  • Grandtner MM. 1966. La végétation forestière du Québec méridional. Québec: Presses de l'Université Laval.

    Google Scholar 

  • Harper K, Boudreault C, DeGrandpré L, Drapeau P, Gauthier S, Bergeron Y. 2003. Structure, composition, and diversity of old-growth black spruce boreal forest of the Clay Belt region in Quebec and Ontario. Environ Rev 11:S79–98.

    Article  Google Scholar 

  • Hobbie SE. 1992. Effects of plant species on nutrient cycling. Trends in Ecol Evol 7:336–9.

    Article  CAS  Google Scholar 

  • Hollingsworth T, Schuur E, Chapin F, Walker M. 2008. Plant community composition as a predictor of regional soil carbon storage in Alaskan boreal black spruce ecosystems. Ecosystems 11:629.

    Article  CAS  Google Scholar 

  • Hyodo F, Kusaka S, Wardle DA, Nilsson M-C. 2013. Changes in stable nitrogen and carbon isotope ratios of plants and soil across a boreal forest fire chronosequence. Plant Soil 367:111–19.

    Article  CAS  Google Scholar 

  • Johnson DW, Turner J. 2014. Nitrogen budgets of forest ecosystems: a review. For Ecol Manag 318:370–9.

    Article  Google Scholar 

  • Jonsson M, Wardle DA. 2009. Structural equation modelling reveals plant-community drivers of carbon storage in boreal forest ecosystems. Biol Lett. https://doi.org/10.1098/rsbl.2009.0613.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnstone JF, Hollingsworth TN, Chapin FS, Mack MC. 2010. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob Change Biol 16:1281–95.

    Article  Google Scholar 

  • Kelly R, Chipman ML, Higuera PE, Stefanova I, Brubaker LB, Hu FS. 2013. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc Natl Acad Sci 110:13055–60.

    Article  PubMed  Google Scholar 

  • Kroppenstedt R. 1985. Fatty acid and menaquinone analysis of actinomycetes and related organisms. Chemical methods in bacterial systematics. No. 20 SAB Technical series:173–99.

  • Laganière J, Angers DA, Paré D, Bergeron Y, Chen HYH. 2011. Black spruce soils accumulate more uncomplexed organic matter than aspen soils. Soil Sci Soc Am J 75:1125–32.

    Article  CAS  Google Scholar 

  • Lagerström A, Nilsson M-C, Wardle DA. 2013. Decoupled responses of tree and shrub leaf and litter trait values to ecosystem retrogression across an island area gradient. Plant Soil 367:183–97.

    Article  CAS  Google Scholar 

  • Laliberte E, Turner BL, Costes T, Pearse SJ, Wyrwoll KH, Zemunik G, Lambers H. 2012. Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot. J Ecol 100:631–42.

    Article  CAS  Google Scholar 

  • Lambert MC, Ung CH, Raulier F. 2005. Canadian national tree aboveground biomass equations. Can J For Res 35:1996–2018.

    Article  Google Scholar 

  • Lamlom SH, Savidge RA. 2003. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenergy 25:381–8.

    Article  CAS  Google Scholar 

  • Larocque I, Bergeron Y, Campbell I, Bradshaw R. 2000. Vegetation changes through time on islands of Lake Duparquet, Abitibi, Canada. Can J For Res 30:179–90.

    Article  Google Scholar 

  • Lavoie M, Paré D, Fenton N, Groot A, Taylor K. 2005. Paludification and management of forested peatlands in Canada: a literature review. Environ Rev 13:21–50.

    Article  Google Scholar 

  • Légaré S, Paré D, Bergeron Y. 2005. Influence of aspen on forest floor properties in black spruce-dominated stands. Plant Soil 275:207–20.

    Article  CAS  Google Scholar 

  • Pare D, Bergeron Y. 1995. Above-ground biomass accumulation along a 230-year chronosequence in the southern portion of the Canadian boreal forest. J Ecol 83:1001–7.

    Article  Google Scholar 

  • Paré D, Bergeron Y, Camiré C. 1993. Changes in the forest floor of Canadian southern boreal forest after disturbance. J Veg Sci 4:811–18.

    Article  Google Scholar 

  • Patterson WA, Edwards KJ, Maguire DJ. 1987. Microscopic charcoal as a fossil indicator of fire. Quat Sci Rev 6:3–23.

    Article  Google Scholar 

  • Peltzer DA, Wardle DA, Allison VJ, Baisden WT, Bardgett RD, Chadwick OA, Condron LM, Parfitt RL, Porder S, Richardson SJ. 2010. Understanding ecosystem retrogression. Ecol Monogr 80:509–29.

    Article  Google Scholar 

  • Reed WJ. 2001. Chapter 12—statistical inference for historical fire frequency using the spatial mosaic. In: Johnson EA, Miyanishi K, Eds. Forest fires. San Diego: Academic Press. p 419–35.

    Chapter  Google Scholar 

  • Simard M, Bernier PY, Bergeron Y, Pare D, Guérine L. 2009. Paludification dynamics in the boreal forest of the James Bay Lowlands: effect of time since fire and topography. Can J For Res 39:546–52.

    Article  CAS  Google Scholar 

  • Simard M, Lecomte N, Bergeron Y, Bernier PY, Paré D. 2007. Forest productivity decline caused by successional paludification of boreal soils. Ecol Appl 17:1619–37.

    Article  PubMed  Google Scholar 

  • Thiffault E, Paré D, Guindon L, Beaudoin A, Brais S, Leduc A, Michel J-P. 2013. Assessing forest soil base cation status and availability using lake and stream sediment geochemistry: a case study in Quebec (Canada). Geoderma 211:39–50.

    Article  CAS  Google Scholar 

  • Troth JL, Deneke FJ, Brown LM. 1976. Upland aspen/birch and black spruce stands and their litter and soil properties in interior Alaska. For Sci 22:33–44.

    CAS  Google Scholar 

  • Veillette JJ. 1994. Evolution and paleohydrology of glacial Lakes Barlow and Ojibway. Quat Sci Rev 13:945–71.

    Article  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl 20:5–15.

    Article  Google Scholar 

  • Walker T, Syers JK. 1976. The fate of phosphorus during pedogenesis. Geoderma 15:1–19.

    Article  CAS  Google Scholar 

  • Ward C, Pothier D, Paré D. 2014. Do boreal forests need fire disturbance to maintain productivity? Ecosystems 17:1053–67.

    Article  CAS  Google Scholar 

  • Ward P, Tithecott A, Wotton B. 2001. Reply A re-examination of the effects of fire suppression in the boreal forest. Can J For Res 31:1467–80.

    Google Scholar 

  • Wardle D. 1993. Changes in the microbial biomass and metabolic quotient during leaf litter succession in some New Zealand forest and scrubland ecosystems. Funct Ecol 7:346–55.

    Article  Google Scholar 

  • Wardle DA. 1998. Controls of temporal variability of the soil microbial biomass: a global-scale synthesis. Soil Biol Biochem 30:1627–37.

    Article  CAS  Google Scholar 

  • Wardle DA, Hörnberg G, Zackrisson O, Kalela-Brundin M, Coomes DA. 2003. Long-term effects of wildfire on ecosystem properties across an island area gradient. Science 300:972–5.

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–13.

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Walker LR, Peltzer DA, Lagerström A. 2008. The response of plant diversity to ecosystem retrogression: evidence from contrasting long-term chronosequences. Oikos 117:93–103.

    Article  Google Scholar 

  • Wardle DA, Jonsson M, Bansal S, Bardgett RD, Gundale MJ, Metcalfe DB. 2012. Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. J Ecol 100:16–30.

    Article  Google Scholar 

  • White D, Davis W, Nickels J, King J, Bobbie R. 1979. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Yuan W, Dong W, Liu S. 2014. Seasonal patterns of litterfall in forest ecosystem worldwide. Ecol Complex 20:240–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by Wallenberg Scholars award to DAW, and an NSERC discovery grant to YB. We thank all field assistants that made it possible to collect all this data, as well as the Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques du Québec for granting access to protected islands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Cavard.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavard, X., Bergeron, Y., Paré, D. et al. Disentangling Effects of Time Since Fire, Overstory Composition and Organic Layer Thickness on Nutrient Availability in Canadian Boreal Forest. Ecosystems 22, 33–48 (2019). https://doi.org/10.1007/s10021-018-0251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-018-0251-3

Keywords

Navigation