Skip to main content

Advertisement

Log in

Resistance, Resilience or Change: Post-disturbance Dynamics of Boreal Forests After Insect Outbreaks

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Understanding and measuring forest resistance and resilience have emerged as key priorities in ecology and management, particularly to maintain forest functioning. The analysis of the factors involved in a forest’s ability to cope with disturbances is key in identifying forest vulnerability to environmental change. In this study, we apply a procedure based on combining pathway analyses of forest composition and structure with quantitative indices of resistance and resilience to disturbances. We applied our approach to boreal forests affected by a major spruce budworm outbreak in the province of Quebec (Canada). We aimed to identify the main patterns of forest dynamics and the environmental factors affecting these responses. To achieve this goal, we developed quantitative metrics of resistance and resilience. We then compared forests with different pre-disturbance conditions and explored the factors influencing their recovery following disturbance. We found that post-outbreak forest dynamics are determined by distinct resistance and resilience patterns according to dominant species and stand composition and structure. Black spruce forests are highly resistant to spruce budworm outbreaks, but this resistance is conditioned by the length of the defoliation period, with long outbreaks having the potential to lead the system to collapse. In contrast, balsam fir forests easily change to a different composition after outbreaks but are highly resilient when mixed with hardwood species. Overall, the severity of the disturbance and the tree species affected are the main drivers contributing to boreal forest resistance and resilience. Our procedure is valuable to understand post-disturbance dynamics of a broad range of communities and to guide management strategies focused on enhancing the resistance and resilience of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ayres MP, Lombardero MJ. 2017. Forest pests and their management in the Anthropocene. Can J For Res 07:1–10.

    Google Scholar 

  • Bagchi S, Singh NJ, Briske DD, Bestelmeyer BT, McClaran MP, Murthy K. 2017. Quantifying long-term plant community dynamics with movement models: implications for ecological resilience. Ecol Appl 27:1514–28.

    PubMed  Google Scholar 

  • Baskerville GL. 1975. Spruce budworm: Super Silviculturist. For Chron:138–40.

    Google Scholar 

  • Bergeron Y. 2000. Species and Stand Dynamics in the Mixed Woods of Quebec’s Southern Boreal Forest. Ecology 81:1500–16.

    Google Scholar 

  • Bergeron Y, Leduc A, Morin H, Joyal C. 1995. Balsam fir mortality following the last spruce budworm outbreak in northwestern Quebec. Can J For Res 25:1375–84.

    Google Scholar 

  • Blais JR. 1957. Some relationships of the spruce budworm, Choristoneura fumiferana (Clem.) to black spruce, Picea mariana (Moench) Voss. For Chron 33:364–72.

    Google Scholar 

  • Bognounou F, De Grandpré L, Pureswaran DS, Kneeshaw D. 2017. Temporal variation in plant neighborhood effects on the defoliation of primary and secondary hosts by an insect pest. Ecosphere 8:1–15.

    Google Scholar 

  • Bouchard M, Auger I. 2014. Influence of environmental factors and spatio-temporal covariates during the initial development of a spruce budworm outbreak. Landsc Ecol 29:111–26.

    Google Scholar 

  • Bouchard M, Kneeshaw D, Bergeron Y. 2006. Forest Dynamics after Successive Spruce Budworm Outbreaks in Mixedwood Forests. Ecology 87:2319–29.

    PubMed  Google Scholar 

  • Boulanger Y, Arseneault D. 2004. Spruce budworm outbreaks in eastern Quebec over the last 450 years. Can J For Res 34:1035–43.

    Google Scholar 

  • Bruelheide H, Luginbühi U. 2009. Peeking at ecosystem stability: Making use of a natural disturbance experiment to analyze resistance and resilience. Ecology 90:1314–25.

    PubMed  Google Scholar 

  • Connell SD, Ghedini G. 2015. Resisting regime-shifts: The stabilising effect of compensatory processes. Trends Ecol Evol 30:513–15.

    PubMed  Google Scholar 

  • Cribari-Neto F, Zeileis A. 2010. Beta Regression in R. J Stat Softw 34:1–24.

    Google Scholar 

  • D’Aoust V, Kneeshaw D, Bergeron Y. 2004. Characterization of canopy openness before and after a spruce budworm outbreak in the southern boreal forest. Can J For Res 34:339–52.

    Google Scholar 

  • D’Orangeville L, Houle D, Duchesne L, Phillips RP, Bergeron Y, Kneeshaw D. 2018. Beneficial effects of climate warming on boreal tree growth may be transitory. Nat Commun 9:3213.

    PubMed  PubMed Central  Google Scholar 

  • Despland E. 2017. Effects of phenological synchronization on caterpillar early-instar survival under a changing climate. Can J For Res:1–8.

  • Díaz-Delgado R, Lloret F, Pons X, Terradas J. 2002. Satellite evidence of decreasing resilience in Mediterranean plant communities after recurrent wildfires. Ecology 83:2293–303.

    Google Scholar 

  • Duveneck MJ, Scheller RM. 2016. Measuring and managing resistance and resilience under climate change in northern Great Lake forests (USA). Landsc Ecol 31:669–86.

    Google Scholar 

  • De Cáceres M, Font X, Oliva F. 2010. The management of vegetation classifications with fuzzy clustering. J Veg Sci. http://sites.google.com/site/miqueldecaceres/.

  • De Cáceres M, Legendre P, He F. 2013. Dissimilarity measurements and the size structure of ecological communities. Methods Ecol Evol 4:1167–77.

    Google Scholar 

  • De Grandpré L, Kneeshaw DD, Perigon S, Boucher D, Marchand M, Pureswaran D, Girardin MP. 2018. Adverse climatic periods precede and amplify defoliator-induced tree mortality in eastern boreal North America. J Ecol 0:1–16.

  • Gunderson LH. 2000. Ecological resilience — in theory and application. Annu Rev Ecol Syst 31:425–39.

    Google Scholar 

  • Hennigar CR, MacLean DA, Quiring DT, Kershaw JA. 2008. Differences in Spruce Budworm Defoliation among Balsam Fir and White, Red, and Black Spruce. For Sci 54:158–66.

    Google Scholar 

  • Hodgson D, McDonald JL, Hosken DJ. 2015. What do you mean, ‘resilient’? Trends Ecol Evol 30:503–6.

    PubMed  Google Scholar 

  • Hurvich CM, Tsai C-L. 1989. Regression and time series model selection in small samples. Biometrika 76:297–307.

    Google Scholar 

  • Jactel H, Brockerhoff EG. 2007. Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–48.

    PubMed  Google Scholar 

  • Kautz M, Meddens AJH, Hall RJ, Arneth A. 2017. Biotic disturbances in Northern Hemisphere forests – a synthesis of recent data, uncertainties and implications for forest monitoring and modelling. Glob Ecol Biogeogr 26:533–52.

    Google Scholar 

  • Kneeshaw D, Bergeron Y. 1998. Canopy Gap Characteristics and Tree Replacement in the Southeastern Boreal Forest. Ecology 79:783–94.

    Google Scholar 

  • Kneeshaw D, Sturtevant BR, Cooke B, Work TT, Pureswaran D, De Grandpre L, MacLean D. 2015. Insect Disturbances in Forest Ecosystems. In: Corlett RT, Bergeron Y, Eds. Peh KS-H. Oxford, UK: Routledge Handbook of Forest Ecology. Routledge.

    Google Scholar 

  • Legendre P, Gallagher ED. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–80.

    PubMed  Google Scholar 

  • Lexerød NL, Eid T. 2006. An evaluation of different diameter diversity indices based on criteria related to forest management planning. For Ecol Manage 222:17–28.

    Google Scholar 

  • Lindenmayer D, Messier C, Sato C. 2016. Avoiding ecosystem collapse in managed forest ecosystems. Front Ecol Environ 14:561–8.

    Google Scholar 

  • Lloret F, Keeling EG, Sala A. 2011. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120:1909–20.

    Google Scholar 

  • MacKinnon WE, MacLean DA. 2003. The influence of forest and stand conditions on spruce budworm defoliation in New Brunswick, Canada. For Sci 49:657–67.

    Google Scholar 

  • MacLean DA. 1980. Vulnerability of fir-spruce stands during uncontrolled spruce budworm outbreaks: A review and discussion. For Chron 56:213–21.

    Google Scholar 

  • Ministère des Forêts de la Faune et des Parcs. 2016. Données sur les perturbations naturelles – insecte: tordeuse des bourgeons de l’épinette. Jeu de données, version shapefile. https://www.donneesquebec.ca/recherche/fr/dataset/donnees-sur-les-perturbations-naturelles-insecte-tordeuse-des-bourgeons-de-lepinette.

  • Ministère des Ressources Naturelles. 2013. Données descriptives des placettes-échantillons permanentes. Quebec: Direction des inventaires forestiers.

    Google Scholar 

  • Morin H. 1994. Dynamics of balsam fir forests in relation to spruce budworm outbreaks in the Boreal Zone of Quebec. Can J For Res 24:730–41.

    Google Scholar 

  • Nimmo DG, Mac Nally R, Cunningham SC, Haslem A, Bennett AF. 2015. Vive la résistance : reviving resistance for 21st century conservation. Trends Ecol Evol 30:516–23.

    CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2017. vegan: Community Ecology Package.:1–292. https://cran.r-project.org/package=vegan.

  • Oliver TH, Heard MS, Isaac NJB, Roy DB, Procter D, Eigenbrod F, Freckleton R, Hector A, Orme CDL, Petchey OL, Proença V, Raffaelli D, Suttle KB, Mace GM, Martín-López B, Woodcock BA, Bullock JM. 2015. Biodiversity and Resilience of Ecosystem Functions. Trends Ecol Evol 30:673–84.

    PubMed  Google Scholar 

  • Payette S, Delwaide A. 2003. Shift of Conifer Boreal Forest to Lichen-Heath Parkland Caused by Successive Stand Disturbances. Ecosystems 6:540–50.

    Google Scholar 

  • Pothier D, Savard F. 1998. Actualisation des tables de production pour les principales espèces forestières du Québec. Québec, Québec: Ministère des Ressources Naturelles et de la Faune du Québec.

    Google Scholar 

  • Puettmann KJ. 2011. Silvicultural Challenges and Options in the Context of Global Change : “Simple” Fixes and Opportunities for New Management Approaches. J For 109:321–31.

    Google Scholar 

  • Pureswaran DS, De Grandpré L, Paré D, Taylor A, Barrette M, Morin H, Régnière J, Kneeshaw D. 2015. Climate-induced changes in host tree-insect phenology may drive ecological state-shift in boreal forests. Ecology 96:1480–91.

    Google Scholar 

  • Quinlan AE, Berbés-Blázquez M, Haider LJ, Peterson GD. 2016. Measuring and assessing resilience: broadening understanding through multiple disciplinary perspectives. J Appl Ecol 53:677–87.

    Google Scholar 

  • R Core Team. 2017. R: A language and environment for statistical computing. http://www.r-project.org/.

  • Régnière J, Bolstad P. 1994. Statistical Simulation of Daily Air Temperature Patterns Eastern North America to Forecast Seasonal Events in Insect Pest Management. Environ Entomol 23:1368 LP-80.

    Google Scholar 

  • Régnière J, Powell J, Bentz B, Nealis V. 2012. Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling. J Insect Physiol 58:634–47.

    PubMed  Google Scholar 

  • Reyer CPO, Brouwers N, Rammig A, Brook BW, Epila J, Grant RF, Holmgren M, Langerwisch F, Leuzinger S, Medlyn B, Pfeifer M, Verbeeck H, Villela DM. 2015. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J Ecol 103:5–15.

    Google Scholar 

  • Sánchez-Pinillos M, Coll L, De Cáceres M, Ameztegui A. 2016. Assessing the persistence capacity of communities facing natural disturbances on the basis of species response traits. Ecol Indic 66:76–85.

    Google Scholar 

  • Saucier JP, Robitaille A, Grondin P, Bergeron JF, Gosselin J. 2011. Les régions écologiques du Québec méridional (4 version).

  • Scheffer M, Hirota M, Holmgren M, Van Nes EH, Chapin FS. 2012. Thresholds for boreal biome transitions. Proc Natl Acad Sci U S A 109:21384–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schelhaas M-J, Nabuurs G-J, Schuck A. 2003. Natural disturbances in the European forests in the 19th and 20th centuries. Glob Chang Biol 9:1620–33.

    Google Scholar 

  • Seidl R, Spies TA, Peterson DL, Stephens SL, Hicke JA. 2016. Searching for resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem services. J Appl Ecol 53:120–9.

    PubMed  PubMed Central  Google Scholar 

  • Su Q, Maclean DA, Needham TD. 1996. The influence of hardwood content on balsam fir defoliation by spruce budworm. Can J For Res 26:1620–8.

    Google Scholar 

  • Sugiura N. 1978. Further analysts of the data by Akaike’s information criterion and the finite corrections. Commun Stat - Theory Methods 7:13–26.

    Google Scholar 

  • Taylor AR, Chen HYH. 2011. Multiple successional pathways of boreal forest stands in central Canada. Ecography (Cop) 34:208–19.

    Google Scholar 

  • Terrier A, Girardin MP, Périé C, Legendre P, Bergeron Y. 2013. Potential changes in forest composition could reduce impacts of climate change on boreal wildfires. Ecol Appl 23:21–35.

    PubMed  Google Scholar 

  • Tilman D, Downing JA. 1994. Biodiversity and stability in grasslands. Nature 367:363–5.

    Google Scholar 

  • Weed AS. 2013. Consequences of climate change for biotic disturbances. Ecol Monogr 83:441–70.

    Google Scholar 

  • Willis KJ, Jeffers ES, Tovar C. 2018. What makes a terrestrial ecosystem resilient? Science (80-) 359:988–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by MINECO via EST_RES Project (AGL2015-70425-R) and BIOCLIM (CGL2015-6741R) and the EC through the Marie Curie IRSES Project NEWFORESTS (PIRSES-GA-2013-612645) and the ERA-NET Foresterra Project INFORMED (Grant Number: 29183). MINECO provided MSP with support through a predoctoral contract (BES-2013-063019) and AA through a Juan de la Cierva fellowship (FJCI-2014-20739). We thank Mélanie Desrochers and Aurélie Terrier for technical support and three anonymous reviewers for constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Sánchez-Pinillos.

Ethics declarations

Data Availability

The data used in this study are publicly available on the Données Québec webpage (https://www.donneesquebec.ca/fr/).

Additional information

Author’s Contribution

LC conceived the ideas; AL and MSP designed methodology; MSP analyzed the data and led the writing of the manuscript. All authors interpreted results, contributed critically to the drafts and gave final approval for publication.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 898 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Pinillos, M., Leduc, A., Ameztegui, A. et al. Resistance, Resilience or Change: Post-disturbance Dynamics of Boreal Forests After Insect Outbreaks. Ecosystems 22, 1886–1901 (2019). https://doi.org/10.1007/s10021-019-00378-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-019-00378-6

Keywords

Navigation