Skip to main content

Advertisement

Log in

Biogeography of Macrophyte Elemental Composition: Spatiotemporal Modification of Species-Level Traits

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The elemental composition of primary producers represents a potentially important pathway for linking ecosystem scale, climate-driven changes in nutrient supply to ecological processes at the population and community scales. However, such cross-scale linkages may also be dampened by conservation of species-specific differences in tissue stoichiometry. We investigated biogeographic patterns of elemental composition (%N, %C, and C:N ratio) of four ecologically dominant and functionally diverse marine intertidal macrophyte species (the brown algae Fucus distichus and Hedophyllum sessile, the red alga Mazzaella splendens, and the surfgrass Phyllospadix scouleri) along 900 km of coastline of the California Current System over a 10-year period. We used a nested hierarchical design to identify the dominant spatial and temporal scales of elemental composition variability and to test the sensitivity of macrophyte stoichiometry to changing ocean conditions in upwelling, the El Niño-Southern Oscillation (ENSO), the North Pacific Gyre Oscillation (NPGO), and the Pacific Decadal Oscillation (PDO). Elemental composition was highly conserved at the species level but was also sensitive to the environment, displaying marked species-dependent responses to spatial and temporal variation in ocean conditions. Moreover, the effects of local and seasonal processes were strong and with conserved species-specific differences, likely limited coherent cross-species sensitivity to climate variability from ENSO, NPGO and PDO. Unanticipated long-term steady increases in %C and bimodal increases in %N in brown algae and similar decreases in elemental composition of the red alga generated trimodal changes in C:N for these species. These changes may reflect responses of macrophyte communities to continuing changes in carbonate chemistry from ocean acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data can be found at: https://search.dataone.org/view/doi:10.6085/AA/publication_data.80.2.

References

  • Atkinson MJ, Smith SV. 1983. C:N:P ratios of benthic marine plants. Limnol Oceanogr 28:568–74.

    CAS  Google Scholar 

  • Bailey SW, Werdell PJ. 2006. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens Environ 102:12–23.

    Google Scholar 

  • Bakker ES, Wood KA, Pagès JF, Veen GF, Christianen MJA, Santamaría L, Nolet BA, Hilt S. 2016. Herbivory on freshwater and marine macrophytes: A review and perspective. Aquat Bot 135:18–36.

    Google Scholar 

  • Bakun A. 1967. Daily and weekly upwelling indices, west coast of North America. Seattle, WA: United States Department of Commerce, National Oceanic and Atmospheric Administration. p 114.

    Google Scholar 

  • Barber RT, Chavez FP. 1983. Biological consequences of El Niño. Science 222:1203–10.

    CAS  PubMed  Google Scholar 

  • Barth JA, Menge BA, Lubchenco J, Chan F, Bane JM, Kirincich AR, McManus MA, Nielsen KJ, Pierce SD, Washburn L. 2007. Delayed upwelling alters nearshore coastal ocean ecosystems in the northern California current. Proc Natl Acad Sci 104:3719–24.

    CAS  PubMed  Google Scholar 

  • Barth JA, Smith RL. 1998. Separation of a coastal upwelling jet at Cape Blanco, Oregon, USA. South Africa Journal of Marine Science 19:5–14.

    Google Scholar 

  • Beer S, Koch E. 1996. Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments. Mar Ecol Prog Ser 141:199–204.

    Google Scholar 

  • Blanchette CA, Broitman BR, Gaines SD. 2006. Intertidal community structure and oceanographic patterns around Santa Cruz Island, CA, USA. Mar Biol 149:689–701.

    Google Scholar 

  • Blanchette CA, Miner CM, Raimondi PT, Lohse D, Heady KEK, Broitman BR. 2008. Biogeographical patterns of rocky intertidal communities along the Pacific coast of North America. J Biogeogr 35:1593–607.

    Google Scholar 

  • Blanchette CA, Wieters EA, Broitman BR, Kinlan BP, Schiel DR. 2009. Trophic structure and diversity in rocky intertidal upwelling ecosystems: A comparison of community patterns across California. Chile, South Africa and New Zealand, Progress in Oceanography 83:107–16.

    Google Scholar 

  • Bode AB, Maria Teresa A-O, Manuel V. 2006. Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes. Mar Ecol Prog Ser 318:89–102.

    CAS  Google Scholar 

  • Borum J, Sand-Jensen K. 1996. Is total primary production in shallow coastal marine waters stimulated by nitrogen loading? Oikos 76:406–10.

    Google Scholar 

  • Bosman AL, DuToit JT, Hockey PAR, Branch GM. 1986. A field experiment demonstrating the influence of seabird guano on intertidal primary production. Estuar Coast Shelf Sci 23:283–94.

    Google Scholar 

  • Bryson ES, Trussell GC, Ewanchuk PJ. 2014. Broad-scale geographic variation in the organization of rocky intertidal communities in the Gulf of Maine. Ecol Monogr 84:579–97.

    Google Scholar 

  • Burnaford JL. 2004. Habitat modification and refuge from sublethal stress drive a marine-plant herbivore association. Ecology 85:2837–49.

    Google Scholar 

  • Burnaford JL, Nielsen KJ, Williams SL. 2014. Celestial mechanics affects emersion time and cover patterns of an ecosystem engineer, the intertidal kelp Hedophyllum sessile. Mar Ecol Prog Ser 509:127–36.

    Google Scholar 

  • Chan F, Barth JA, Blanchette CA, Byrne RH, Chavez F, Cheriton O, Feely RA, Friederich G, Gaylord B, Gouhier T, Hacker SD, Hill T, Hoffmann G, McManus MA, Menge BA, Nielsen KJ, Russell A, Sanford E, Sevadjian J, Washburn L. 2017. Persistent spatial structuring of coastal ocean acidification in the California Current System. Nature Scientific Reports 7:2526. https://doi.org/10.1038/s41598-017-02777-y.

    Article  CAS  Google Scholar 

  • Chan F, Barth JA, Lubchenco J, Kirincich AR, Weeks H, Peterson WT, Menge BA. 2008. Emergence of anoxia in the California current large marine ecosystem. Science 319:920.

    CAS  PubMed  Google Scholar 

  • Chapman ARO, Craigie JS. 1977. Seasonal growth in Laminaria longicruris: Relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar Biol 40:197–205.

    CAS  Google Scholar 

  • Checkley DMJ, Barth JA. 2009. Patterns and processes in the California Current System. Prog Oceanogr 83:49–64.

    Google Scholar 

  • Close SL. 2014. The roles of nutrients, oceanography, and light in the structure and functioning of rocky intertidal macrophyte assemblages. PhD Dissertation, Oregon State University, Corvallis, Oregon.

  • Connolly SR, Menge BA, Roughgarden J. 2001. A latitudinal gradient in recruitment of intertidal invertebrates in the Northeast Pacific Ocean. Ecology 82:1799–813.

    Google Scholar 

  • Dayton PK, Tegner MJ, Parnell PE, Edwards PB. 1992. Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecol Monogr 62:421–45.

    Google Scholar 

  • Dennison WC, Orth RJ, Moore KA, Stevenson JC, Carter V, Kollar S, Bergstrom PW, Batiuk RA. 1993. Assessing water quality with submersed aquatic vegetation. Bioscience 43:86–94.

    Google Scholar 

  • De Senerpont Domis LN, Van de Waal DB, Helmsing NR, Van Donk E, Mooij WM. 2014. Community stoichiometry in a changing world: combined effects of warming and eutrophication on phytoplankton dynamics. Ecology 95:1485–95.

    Google Scholar 

  • Dethier MN, Duggins DO. 1984. An “indirect commensalism” between marine herbivores and the importance of competitive hierarchies. Am Nat 124:205–19.

    Google Scholar 

  • Di Lorenzo E, Schneider N, Cobb KM, Chhak K, Franks PJS, Miller AJ, McWilliams JC, Bograd SJ, Arango H, Curchister E, Powell TM, Rivere P. 2008. North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607. https://doi.org/10.1029/2007GL032838.

    Article  Google Scholar 

  • Duarte CM. 1990. Seagrass elemental composition. Mar Ecol Prog Ser 67:201–7.

    Google Scholar 

  • Duarte CM. 1992. Nutrient concentration of aquatic plants: patterns across species. Limnol Oceanogr 37:882–9.

    CAS  Google Scholar 

  • Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change 3:961–8.

    CAS  Google Scholar 

  • Dugdale RC, Goering JJ. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12:196–206.

    CAS  Google Scholar 

  • Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagain W, Schade J, Hood J, Sterner RW. 2003. Growth rate-stiochiometry couplings in diverse biota. Ecol Lett 6:936–43.

    Google Scholar 

  • Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ. 2010. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol 186:593–608.

    CAS  PubMed  Google Scholar 

  • Fenberg PB, Menge BA, Raimondi PT, Rivadeneira MM. 2015. Biogeographic structure of the northeastern Pacific rocky intertidal: the role of upwelling and dispersal to drive patterns. Ecography 38:83–95.

    Google Scholar 

  • Fong P, Zedler JB. 1993. Temperature and light effects on the seasonal succession of algal communities in shallow coastal lagoons. J Exp Mar Biol Ecol 171:259–72.

    Google Scholar 

  • Fujita RM. 1985. The role of nitrogen status in regulating transient ammonium uptake and nitrogen storage by macroalgae. J Exp Mar Biol Ecol 92:283–301.

    CAS  Google Scholar 

  • Fujita RM, Wheeler PA, Edwards RL. 1989. Assessment of macroalgal nitrogen limitation in a seasonal upwelling region. Mar Ecol Prog Ser 53:293–303.

    Google Scholar 

  • Gaines SD. 1984. Herbivory and between-habitat diversity: the differential effectiveness of defenses in a marine plant. Ecology 66:473–85.

    Google Scholar 

  • García-Reyes M, Largier JL. 2012. Seasonality of coastal upwelling off central and northern California: New insights, including temporal and spatial variability. J Geophys Res: Oceans 117:C03028.

    Google Scholar 

  • Graham WM, Largier JL. 1997. Upwelling shadows as nearshore retention sites: the example of northern Monterey Bay. Cont Shelf Res 17:509–32.

    Google Scholar 

  • Grice AM, Loneragan NR, Dennison WC. 1996. Light intensity and the interactions between physiology, morphology and stable isotope ratios in five species of seagrass. J Exp Mar Biol Ecol 195:91–110.

    CAS  Google Scholar 

  • Gruber N, Hauri C, Lachkar Z, Loher D, Frölicher TL, Plattner GK. 2012. Rapid progression of ocean acidification in the California Current System. Science 337:220–3.

    CAS  PubMed  Google Scholar 

  • Hacker SD, Menge BA, Nielsen KJ, Chan F, Gouhier TC. 2019. Regional processes are stronger determinants of rocky intertidal community dynamics than local biotic interactions. Ecology 100:e02763.

    PubMed  Google Scholar 

  • Halsey KH, Jones BM. 2015. Phytoplankton strategies for photosynthetic energy allocation. Ann Rev Mar Sci 7:265–97.

    PubMed  Google Scholar 

  • Helmuth BST, Broitman BR, Blanchette CA, Gilman S, Halpin P, Harley CDG, O’Donnell MJ, Hofmann GE, Menge BA, Strickland D. 2006. Mosaic patterns of thermal stress in the rocky intertidal zone: implications for climate change. Ecol Monogr 76:461–79.

    Google Scholar 

  • Henriksen P, Riemann B, Kaas H, Sørensen HM, Sørensen HL. 2002. Effects of nutrient-limitation and irradiance on marine phytoplankton pigments. J Plankton Res 24:835–58.

    CAS  Google Scholar 

  • Hessen DO, Elser JJ, Sterner RW, Urabe J. 2013. Ecological stoichiometry: An elementary approach using basic principles. Limnol Oceanogr 58:2219–36.

    CAS  Google Scholar 

  • Hessing-Lewis ML, Hacker SD, Menge BA, McConville S-o, Henderson J. 2015. Are large macroalgal blooms necessarily bad? Nutrient impacts on seagrass in upwelling-influenced estuaries. Ecol Appl 25:1330–47.

    PubMed  Google Scholar 

  • Hillebrand H, Sommer U. 1999. The nutrient stoichiometry of benthic microalgal growth: Redfield proportions are optimal. Limnol Oceanogr 44:440–6.

    Google Scholar 

  • Iles AC, Gouhier TC, Menge BA, Stewart JS, Haupt AJ, Lynch MC. 2012. Climate-driven trends and ecological implications of event-scale upwelling in the California Current System. Glob Change Biol 18:783–96.

    Google Scholar 

  • Jones MN. 1984. Nitrate reduction by shaking with cadmium: alternative to cadmium columns. Water Res 18:643–6.

    CAS  Google Scholar 

  • Kamykowski D. 1987. A preliminary biophysical model of relationships between temperature and plant nutrients in the upper ocean. Deep Sea Res Part A: Oceanogr Res Pap 34:1067–79.

    CAS  Google Scholar 

  • Kavanaugh MT, Nielsen KJ, Chan FT, Menge BA, Letelier RM, Goodrich LM. 2009. Experimental assessment of the effects of shade on an intertidal kelp: Do phytoplankton blooms inhibit growth of open-coast macroalgae? Limnol Oceanogr 54:276–88.

    Google Scholar 

  • Kemp WM, Boynton WR, Adolf JE, Boesch DF, Boicourt WC, Brush G, Cornwell JC, Fisher TR, Glibert PM, Hagy JD, Harding LW. 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Mar Ecol Prog Ser 303:1–29.

    Google Scholar 

  • Kirincich AR, Barth JA, Grantham BA, Lubchenco J, Menge BA. 2005. Wind-driven inner-shelf circulation off central Oregon during summer. J Geophys Res 110:C10S03.

    Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang XH. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Change Biol 19:103–32.

    Google Scholar 

  • Lapointe BE. 1997. Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnol Oceanogr 42:1119–31.

    CAS  Google Scholar 

  • Lubchenco J. 1978. Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. Am Nat 112:23–39.

    Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteor Soc 78:1069–79.

    Google Scholar 

  • Mann KH. 1973. Seaweeds: their productivity and strategy for growth. Science 182:975–81.

    CAS  PubMed  Google Scholar 

  • McGlathery KJ, Sundbäck K, Anderson IC. 2007. Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Mar Ecol Prog Ser 348:1–18.

    CAS  Google Scholar 

  • Menge BA, Blanchette CA, Raimondi P, Freidenburg TL, Gaines SD, Lubchenco J, Lohse D, Hudson G, Foley MM, Pamplin J. 2004. Species interaction strength: testing model predictions along an upwelling gradient. Ecol Monogr 74:663–84.

    Google Scholar 

  • Menge BA, Daley BA, Wheeler PA, Strub PT. 1997. Rocky intertidal oceanography: an association between community structure and nearshore phytoplankton concentration. Limnol Oceanogr 42:57–66.

    CAS  Google Scholar 

  • Menge BA, Gouhier TC, Hacker SD, Chan F, Nielsen KJ. 2015. Are meta-ecosystems organized hierarchically? A model and test in rocky intertidal habitats. Ecol Monogr 85:213–33.

    Google Scholar 

  • Menge BA, Lubchenco J, Bracken MES, Chan F, Foley MM, Freidenburg TL, Gaines SD, Hudson G, Krenz C, Leslie H, Menge DNL, Russell R, Webster MS. 2003. Coastal oceanography sets the pace of rocky intertidal community dynamics. Proc Natl Acad Sci USA 100:12229–34.

    CAS  PubMed  Google Scholar 

  • Messié M, Ledesma J, Kolber DD, Michisaki RP, Foley DG, Chavez FP. 2009. Potential new production estimates in four eastern boundary upwelling ecosystems. Prog Oceanogr 83:151–8.

    Google Scholar 

  • Murray SN, Horn MH. 1989. Variations in standing stocks of central California macrophytes from a rocky intertidal habitat before and during the 1982-1983 El Niño. Mar Ecol Prog Ser 58:113–22.

    Google Scholar 

  • Niell FX. 1976. C: N ratio in some marine macrophytes and its possible ecological significance. Bot Mar 19:347–50.

    CAS  Google Scholar 

  • Nielsen KJ. 2003. Nutrient loading and consumers: agents of change in open-coast macrophyte assemblages. Proc Natl Acad Sci 100:7660–5.

    CAS  PubMed  Google Scholar 

  • Nielsen KJ, Blanchette CA, Menge BA, Lubchenco J. 2006. Physiological snapshots reflect ecological performance of the sea palm, Postelsia palmaeformis (Phaeophyceae) across intertidal elevation and exposure gradients. J Phycol 42:548–59.

    CAS  Google Scholar 

  • Nielsen KJ, Navarrete SA. 2004. Mesoscale regulation comes from the bottom-up: intertidal interactions between consumers and upwelling. Ecol Lett 7:31–41.

    Google Scholar 

  • Orth RJ, Dennison WC, Lefcheck JS, Gurbisz C, Hannam M, Keisman J, Landry JB, Moore KA, Murphy RR, Patrick CJ, Testa J. 2017. Submersed aquatic vegetation in Chesapeake Bay: sentinel species in a changing world. Bioscience 67:698–712.

    Google Scholar 

  • Osborne EB, Thunell RC, Gruber N, Feely RA, Benitez-Nelson CR. 2020. Decadal variability in twentieth-century ocean acidification in the California Current Ecosystem. Nat Geosci 13:43–9.

    CAS  Google Scholar 

  • Oschlies A, Schulz KG, Riebesell U, Schmittner A. 2008. Simulated 21st century’s increase in oceanic suboxia by CO2-enhanced biotic carbon export. Global Biogeochem Cycles 22(GB4008):2008. https://doi.org/10.1029/2007gb003147.

    Article  Google Scholar 

  • Peterson WT, Schwing FB. 2003. A new climate regime in northeast Pacific ecosystems. Geophysical Research Letters, 30: OCE 6-1, 1896. https://doi.org/10.1029/2003GL017528.

  • Peterson WT, Emmett R, Goericke R, Venrick E, Mantyla A, Bograd SJ, Schwing FB, Hewitt R, Lo N, Watson W. 2006. The state of the California Current, 2005–2006: warm in the north, cool in the south. California Cooperative Oceanic Fisheries Investigations Reports 47:30.

    Google Scholar 

  • Pfister CA, Altabet MA, Post D. 2014. Animal regeneration and microbial retention of nitrogen along coastal rocky shores. Ecology 95:2803–14.

    Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA. 1963. The influence of organisms on the composition of sea-water. In: Hill MN, Ed. The Sea, Vol. 2. Hoboken, NJ: Wiley-Interscience. p 26–77.

    Google Scholar 

  • Riebesell U, Schulz KG, Bellerby RGJ, Botros M, Fritsche P, Meyerhöfer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zöllner E. 2007. Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545–8.

    CAS  PubMed  Google Scholar 

  • Ruesink JL, Yang S, Trimble AC. 2015. Variability in carbon availability and eelgrass (Zostera marina) biometrics along an estuarine gradient in Willapa Bay, WA, USA. Estuar Coasts 38:1908–17.

    CAS  Google Scholar 

  • Rykaczewski RR, Dunne JP. 2010. Enhanced nutrient supply to the California Current Ecosystem with global warming and increased stratification in an earth system model. Geophys Res Lett 37:L21606.

    Google Scholar 

  • Sanford E, Roth MS, Johns GC, Wares JP, Somero GN. 2003. Local selection and latitudinal variation in a marine predator-prey interaction. Science 300:1135–7.

    CAS  PubMed  Google Scholar 

  • Sanford E, Worth DJ. 2009. Genetic differences among populations of a marine snail drive geographic variation in predation. Ecology 90:3108–18.

    PubMed  Google Scholar 

  • Sanford E, Worth DJ. 2010. Local adaptation along a continuous coastline: prey recruitment drives differentiation in a predatory snail. Ecology 91:891–901.

    PubMed  Google Scholar 

  • Schoch GC, Menge BA, Allison G, Kavanaugh M, Thompson SA, Wood SA. 2006. Fifteen degrees of separation: Latitudinal gradients of rocky intertidal biota along the California Current. Limnol Oceanogr 51:2564–85.

    Google Scholar 

  • Smith SV. 1981. Marine macrophytes as a global carbon sink. Science 211:838–40.

    CAS  PubMed  Google Scholar 

  • Stange P, Taucher J, Bach LT, Algueró-Muñiz M, Horn HG, Krebs L, Boxhammer T, Nauendorf AK, Riebesell U. 2018. Ocean acidification-induced restructuring of the plankton food web can influence the degradation of sinking particles. Front Mar Sci 5:140.

    Google Scholar 

  • Steneck RS, Dethier MN. 1994. A functional group approach to the structure of algal-dominated communities. Oikos 69:476–98.

    Google Scholar 

  • Sterner RW, Andersen T, Elser JJ, Hessen DO, Hood JM, McCauley E, Urabe J. 2008. Scale-dependent carbon:nitrogen:phosphorus seston stoichiometry in marine and freshwaters. Limnol Oceanogr 53:1169–80.

    CAS  Google Scholar 

  • Sterner RW, Elser JJ. 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton, NJ: Princeton University Press. p 464.

    Google Scholar 

  • Sterner RW, Elser JJ, Fee EJ, Guildford SJ, Chrzanowski TH. 1997. The light: nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process. Am Nat 150:663–84.

    CAS  PubMed  Google Scholar 

  • Stewart HL, Fram JP, Reed DC, Williams SL, Brzezinski MA, MacIntyre S, Gaylord B. 2009. Differences in growth, morphology and tissue carbon and nitrogen of Macrocystis pyrifera within and at the outer edge of a giant kelp forest in California, USA. Mar Ecol Prog Ser 375:101–12.

    Google Scholar 

  • Strickland JD, Parsons TR. 1968. A practical handbook of seawater analysis. 1st edn. Toronto: Fisheries Research Board of Canada.

    Google Scholar 

  • Turner T. 1985. Stability of rocky intertidal surfgrass beds: persistence, preemption, and recovery. Ecology 66:83–92.

    Google Scholar 

  • US Department of Commerce. 2013, December 16. NOAA Earth System Research Laboratory. http://www.esrl.noaa.gov/psd/enso/mei/.

  • Valiela I, McClelland J, Hauxwell J, Behr PJ, Hersh D, Foreman K. 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42:1105–18.

    Google Scholar 

  • Van de Waal DB, Verschoor AM, Verspagen JM, van Donk E, Huisman J. 2010. Climate-driven changes in the ecological stoichiometry of aquatic ecosystems. Front Ecol Environ 8:145–52.

    Google Scholar 

  • Wheeler PA, Björnsäter BR. 1992. Seasonal fluctuations in tissue nitrogen, phosphorus, and N: P for five macroalgae species common to the Pacific Northwest coast. J Phycol 28:1–6.

    CAS  Google Scholar 

  • Whitlock MC, Schluter D. 2015. The analysis of biological data. 2nd edn. New York: W. H. Freeman and Company.

    Google Scholar 

  • Wootton JT. 1994. Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology 75:151–65.

    Google Scholar 

  • Zhu C, Kobayashi K, Loladze I, Zhu J, Jiang Q, Xu X, Liu G, Seneweera S, Ebi KL, Drewnowski A, Fukagawa NK. 2018. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci Adv 4:1012.

    Google Scholar 

  • Zimmerman RC, Hill VJ, Jinuntuya M, Celebi B, Ruble D, Smith M, Cedeno T, Swingle WM. 2017. Experimental impacts of climate warming and ocean carbonation on eelgrass Zostera marina. Mar Ecol Prog Ser 566:1–15.

    CAS  Google Scholar 

  • Zimmerman RC, Robertson DL. 1985. Effects of El Niño on local hydrography and growth of the giant kelp, Macrocystis pyrifera, at Santa Catalina Island, California. Limnol Oceanogr 30:1298–302.

    Google Scholar 

Download references

Acknowledgements

We thank Tarik Gouhier for statistical advice and for calculating the localized upwelling index used here. A. Iles, E. Gorsich, B. Beechler, E. Cerny-Chipman, and many others provided insightful feedback on early drafts of the manuscript. Many volunteers, interns, technicians, and graduate students at both OSU and SSU assisted with sample collection and processing. Those most involved in sample collection and processing included: at OSU, E. Richmond, M. Noble, G. Murphy, C. Pennington, R. Craig, M. Poole, L. Hunter, A. Johnson, J. Robinson, S. Gerrity, J. Henderson, and M. Ellis; and at SSU, A. Paquin, R. DiFiori, B. Cortina, T. Hazen, R. Francis, S. Briggs, K. Gilmore and T. Mangor. We also thank the late Susan Williams (UC Davis, Bodega Marine Laboratory) for making her algal grinder available. This research was supported by a National Science Foundation Graduate Research Fellowship to SLC, NSF grant numbers OCE 0726983 and 1061233 to BAM, FC, KJN, and SDH, NSF grant number DEB 1050694 to BAM, endowment funds from the Wayne and Gladys Valley Foundation to BAM, Grants from the A. W. Mellon Foundation to BAM and Jane Lubchenco, and the David and Lucile Packard and Gordon and Betty Moore Foundations for support of the Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO) consortium (Publication 507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Menge.

Additional information

Author Contribution

SLC, SDH, BAM, FC, and KJN conceived of and designed study; SLC, SDH, BAM, FC, and KJN performed research; SLC and BAM analyzed the data; and SLC, SDH, BAM, FC, and KJN wrote the paper.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Close, S.L., Hacker, S.D., Menge, B.A. et al. Biogeography of Macrophyte Elemental Composition: Spatiotemporal Modification of Species-Level Traits. Ecosystems 23, 1494–1522 (2020). https://doi.org/10.1007/s10021-020-00484-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00484-w

Keywords

Navigation