Skip to main content

Advertisement

Log in

Loss of Key Riparian Plant Species Impacts Stream Ecosystem Functioning

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Leaf litter of alder (Alnus glutinosa) is a key resource to detrital stream food webs. Due to its high quality and palatability, it is readily colonised by microorganisms and consumed by detritivores, contributing significantly to carbon and nutrient cycling and to ecosystem functioning. Given that this species has declined due to the spread of the pathogen Phytophthora alni, we investigated how its loss would alter leaf litter decomposition and associated stream assemblages of aquatic hyphomycetes and invertebrates, in a field experiment conducted in three streams. We compared litter mixtures containing alder plus three other species (Corylus avellana, Quercus robur and Salix atrocinerea; that is, 4-species treatments) with mixtures that excluded alder (3-species treatments) and all the monocultures (1-species treatments). The loss of alder reduced decomposition rates, despite the existence of an overall negative diversity effect after 3 weeks of exposure (that is, monocultures decomposed faster than mixtures) and no diversity effect after 6 weeks. Aquatic hyphomycete and detritivore assemblage structure in the mixture without alder differed from those of the mixture with alder and the monocultures, and the former had lower fungal sporulation rate and taxon richness. Our results suggest that alder loss from the riparian vegetation can significantly slow down the processing of organic matter in streams and produce shifts in stream assemblages, with potential consequences on overall ecosystem functioning. We highlight the importance of assessing the ecological consequences of losing single species, particularly those especially vulnerable to stressors, to complement the multiple studies that have assessed the effects of random species loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Almeida F, Rodrigues ML, Coelho C. 2019. The still underestimated problem of fungal diseases worldwide. Frontiers in microbiology 10:214.

    Article  PubMed  PubMed Central  Google Scholar 

  • APHA. 1998. Phosphorus: automated ascorbic acid reduction method, 4500-P, F. Franson MAH editor. Standard Methods for the Examination of Water and Wastewater, 20th edition. Washington, D. C.: American Public Health Association, p148–149.

  • Bärlocher F. 2020. Leaching. Bärlocher F, Gessner MO, Graça MAS editors. Methods to Study Litter Decomposition: a Practical Guide. 2nd Edition. Dordrecht: Springer, p37–41.

  • Berg S, Pimenov A, Palmer C, Emmerson M, Jonsson T. 2015. Ecological communities are vulnerable to realistic extinction sequences. Oikos 124:486–496.

    Article  Google Scholar 

  • Bjelke U, Boberg J, Oliva J, Tattersdill K, McKie BG. 2016. Dieback of riparian alder caused by the Phytophthora alnicomplex: projected consequences for stream ecosystems. Freshwater Biology 61:565–579.

    Article  CAS  Google Scholar 

  • Boyero L, Graça MAS, Tonin AM, Pérez J, A JS, Ferreira V, Landeira-Dabarca A, M AA, Gessner MO, McKie BG, Albarino RJ, Barmuta LA, Callisto M, Chara J, Chauvet E, Colon-Gaud C, Dudgeon D, Encalada AC, Figueroa R, Flecker AS, Fleituch T, Frainer A, Goncalves JF, Jr., Helson JE, Iwata T, Mathooko J, M’Erimba C, Pringle CM, Ramirez A, Swan CM, Yule CM, Pearson RG. 2017. Riparian plant litter quality increases with latitude. Scientific Reports 7:10562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyero L, Pearson RG, Dudgeon D, Graça MAS, Gessner MO, Albariño RJ, Ferreira V, Yule CM, Boulton AJ, Arunachalam M, Callisto M, Chauvet E, Ramírez A, Chará J, Moretti MS, Gonçalves JF, Helson JE, Chará-Serna AM, Encalada AC, Davies JN, Lamothe S, Cornejo A, Li AOY, Buria LM, Villanueva VD, Zúñiga MC, Pringle CM. 2011. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92:1839–1848.

    Article  PubMed  Google Scholar 

  • Brasier CM, Kirk SA, Delcan J, Cooke DE, Jung T, In’t Veld WAM. 2004. Phytophthora alni sp. nov. and its variants: designation of emerging heteroploid hybrid pathogens spreading on Alnus trees. Mycological Research 108:1172–1184.

    Article  CAS  PubMed  Google Scholar 

  • Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ. 2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences 104:18123–18128.

    Article  CAS  Google Scholar 

  • Compson Z, Hungate B, Whitham T, Koch G, Dijkstra P, Siders A, Wojtowicz T, Jacobs R, Rakestraw D, Allred K, Sayer C, Marks J. 2018. Linking tree genetics and stream consumers: isotopic tracers elucidate controls on carbon and nitrogen assimilation. Ecology 99:1759–1770.

    Article  PubMed  Google Scholar 

  • Cornejo A, Pérez J, Alonso A, López-Rojo N, Monroy S, Boyero L. 2020. A common fungicide impairs stream ecosystem functioning through effects on aquatic hyphomycetes and detritivorous caddisflies. Journal of Environmental Management 263:110425.

    Article  CAS  PubMed  Google Scholar 

  • De Cáceres M. 2013. How to use the indicspecies package (ver. 1.7. 1). R Proj 29.

  • Dobson M. 1994. Microhabitat as a determinant of diversity: stream invertebrates colonizing leaf packs. Freshwater Biology 32:565–572.

    Article  Google Scholar 

  • Douda J, Boublík K, Slezák M, Biurrun I, Nociar J, Havrdová A, Doudová J, Aćić S, Brisse H, Brunet J. 2016. Vegetation classification and biogeography of European floodplain forests and alder carrs. Applied Vegetation Science 19:147–163.

    Article  Google Scholar 

  • Fernandes I, Pascoal C, Guimaraes H, Pinto R, Sousa I, Cassio F. 2012. Higher temperature reduces the effects of litter quality on decomposition by aquatic fungi. Freshwater Biology 57:2306–2317.

    Article  Google Scholar 

  • Ferreira V, Encalada AC, Graça MA. 2012. Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshwater Science 31:945–962.

    Article  Google Scholar 

  • Fisher SG, Likens GE. 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecological monographs 43:421–439.

    Article  Google Scholar 

  • Friberg N, Jacobsen D. 1994. Feeding plasticity of two detritivore-shredders. Freshwater Biology 32:133–142.

    Article  Google Scholar 

  • García-Valdés R, Bugmann H, Morin X, Zurell D. 2018. Climate change-driven extinctions of tree species affect forest functioning more than random extinctions. Diversity and Distributions 24:906–918.

    Article  Google Scholar 

  • Gessner MO, Chauvet E. 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75:1807–1817.

    Article  Google Scholar 

  • Graça MA, Ferreira V, Canhoto C, Encalada AC, Guerrero-Bolaño F, Wantzen KM, Boyero L. 2015. A conceptual model of litter breakdown in low order streams. International Review of Hydrobiology 100:1–12.

    Article  CAS  Google Scholar 

  • Graça MAS, Cressa C, Gessner MO, Feio MJ, Callies KA, Barrios C. 2001. Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biology 46:947–957.

    Article  Google Scholar 

  • Gross K, Cardinale BJ. 2005. The functional consequences of random vs. ordered species extinctions. Ecology Letters 8:409–418.

    Article  Google Scholar 

  • Gulis V. 2001. Are there any substrate preferences in aquatic hyphomycetes? Mycological research 105:1088–1093.

    Article  Google Scholar 

  • Gulis V, Marvanová L, Descals E. 2005. An illustrated key to the common temperate species of aquatic hyphomycetes.–In: MAS Graça, F. Bärlocher and MO Gessner (eds.), Methods to study litter decomposition: a practical guide, Springer, Dordrecht, the Netherlands, pp. 153–168.

  • Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ET, Scheu S, Schmid B, van Ruijven J, Vos VC, Hattenschwiler S. 2014. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–221.

    Article  CAS  PubMed  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD. 2002. Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Lambraño RE, de la Cruz DR, Sánchez-Agudo JÁ. 2019. Spatial oak decline models to inform conservation planning in the Central-Western Iberian Peninsula. Forest Ecology and Management 441:115–126.

    Article  Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108.

    Article  CAS  PubMed  Google Scholar 

  • Husson C, Aguayo J, Revellin C, Frey P, Ioos R, Marcais B. 2015. Evidence for homoploid speciation in Phytophthora alni supports taxonomic reclassification in this species complex. Fungal Genetics and Biology 77:12–21.

    Article  CAS  PubMed  Google Scholar 

  • Ives AR, Cardinale BJ. 2004. Food-web interactions govern the resistance of communities after non-random extinctions. 429:174–177.

    CAS  Google Scholar 

  • Jabiol J, Chauvet E. 2012. Fungi are involved in the effects of litter mixtures on consumption by shredders. Freshwater Biology 57:1667–1677.

    Article  Google Scholar 

  • Jung T, Blaschke M. 2004. Phytophthora root and collar rot of alders in Bavaria: distribution, modes of spread and possible management strategies. Plant pathology 53:197–208.

    Article  Google Scholar 

  • Kominoski JS, Pringle CM. 2009. Resource–consumer diversity: testing the effects of leaf litter species diversity on stream macroinvertebrate communities. Freshwater Biology 54:1461–1473.

    Article  Google Scholar 

  • Kominoski JS, Pringle CM, Ball BA, Bradford M, Coleman D, Hall D, Hunter M. 2007. Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream. Ecology 88:1167–1176.

    Article  CAS  PubMed  Google Scholar 

  • Kominoski JS, Shah JJF, Canhoto C, Fischer DG, Giling DP, González E, Griffiths NA, Larrañaga A, LeRoy CJ, Mineau MM, McElarney YR, Shirley SM, Swan CM, Tiegs SD. 2013. Forecasting functional implications of global changes in riparian plant communities. Frontiers in Ecology and the Environment 11:423–432.

    Article  Google Scholar 

  • Kreutzweiser D. 2008. Leaf-litter decomposition and macroinvertebrates communities in boreal forest streams linked to upland logging disturbance. Journal of the North American Benthological Society 27.

  • Kreutzweiser D, Nisbet D, Sibley P, Scarr T. 2019. Loss of ash trees in riparian forests from emerald ash borer infestations has implications for aquatic invertebrate leaf-litter consumers. Canadian Journal of Forest Research 49:134–144.

    Article  CAS  Google Scholar 

  • Laitung B, Chauvet E. 2005. Vegetation diversity increases species richness of leaf-decaying fungal communities in woodland streams. Archiv für Hydrobiologie 164:217–235.

    Article  Google Scholar 

  • Larrañaga A, de Guzmán I, Solagaistua L. 2020. A small supply of high quality detritus stimulates the consumption of low quality materials, but creates subtle effects on the performance of the consumer. Science of The Total Environment: 138397.

  • Larsen TH, Williams NM, Kremen C. 2005. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecology Letters 8:538–547.

    Article  PubMed  Google Scholar 

  • Liu J, Liu X, Song Q, Compson ZG, LeRoy CJ, Luan F, Wang H, Hu Y, Yang Q. 2020. Synergistic effects: a common theme in mixed-species litter decomposition. New Phytologist.

  • López-Rojo N, Martínez A, Pérez J, Basaguren A, Pozo J, Boyero L. 2018. Leaf traits drive plant diversity effects on litter decomposition and FPOM production in streams. PLoS One 13:e0198243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López-Rojo N, Pérez J, Pozo J, Basaguren A, Apodaka-Etxebarria U, Correa-Araneda F, Boyero L. 2020. Shifts in Key Leaf Litter Traits Can Predict Effects of Plant Diversity Loss on Decomposition in Streams. Ecosystems.

  • López-Rojo N, Pozo J, Pérez J, Basaguren A, Martínez A, Tonin AM, Correa-Araneda F, Boyero L. 2019. Plant diversity loss affects stream ecosystem multifunctionality. Ecology e02847.

  • Loreau M, Hector A. 2001. Partitioning selection and complementarity in biodiversity experients. Nature 412:72–76.

    Article  CAS  PubMed  Google Scholar 

  • McArthur JV, Aho JM, Rader RB, Mills GL. 1994. Interspecific leaf interactions during decomposition in aquatic and floodplain ecosystems. Journal of the North American Benthological Society 13:57–67.

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC. 2009. nlme: Linear and nonlinear mixed effects models. R package version 3:96.

  • Pintos-Varela C, Rial-Martínez C, Aguín-Casal O, Mansilla-Vázquez J. 2017. First Report of Phytophthora× multiformis on Alnus glutinosa in Spain. Plant Disease 101:261–261.

    Article  Google Scholar 

  • Sanpera-Calbet I, Lecerf A, Chauvet E. 2009. Leaf diversity influences in-stream litter decomposition through effects on shredders. Freshwater Biology 54:1671–1682.

    Article  Google Scholar 

  • Schindler MH, Gessner MO. 2009. Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology 90:1641–1649.

    Article  PubMed  Google Scholar 

  • Solla A, Pérez-Sierra A, Corcobado T, Haque M, Diez J, Jung T. 2010. Phytophthora alni on Alnus glutinosa reported for the first time in Spain. Plant pathology 59:798–798.

    Article  Google Scholar 

  • Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P. 2010. Invertébrés d’eau douce-systématique, biologie, écologie. Paris: CNRS Editions.

    Google Scholar 

  • Thoirain B, Husson C, Marçais B. 2007. Risk factors for the Phytophthora-induced decline of alder in northeastern France. Phytopathology 97:99–105.

    Article  CAS  PubMed  Google Scholar 

  • Tonin AM, Boyero L, Monroy S, Basaguren A, Pérez J, Pearson RG, Cardinale BJ, Gonçalves JFJ, Pozo J. 2017. Stream nitrogen concentration, but not plant N-fixing capacity, modulates litter diversity effects on decomposition. Functional Ecology.

  • Wallace JB, Eggert SL, Meyer JL, Webster JR. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–104.

    Article  CAS  Google Scholar 

  • Wardle DA. 2016. Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? Journal of Vegetation Science 27:646–653.

    Article  Google Scholar 

  • Waring RH, Running SW. 2010. Forest ecosystems: analysis at multiple scales: Elsevier.

  • Webster J, Benfield E. 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17:567–594.

    Article  Google Scholar 

  • Zar JH. 1999. Biostatistical analysis: Pearson Education India.

  • Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM. 2009. Mixed Effects Models and Extensions in Ecology With R. New York: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

This study was funded by the Spanish Ministry for Science, Innovation and Universities and FEDER (BioLoss project, Ref. RTI2018-095023-B- I00 to LB) and the Basque Government (Ref. IT951-16 to the Stream Ecology Group at the UPV/EHU). AA and NLR were supported by UPV/EHU and Basque Government predoctoral fellowships, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Alonso.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Authors’ Contribution: LB and JB designed the study with feedback from JP and NLR; AA, JP, SM, NLR and AB conducted fieldwork; AA, JP, SM and NLR analysed the samples in the laboratory; AA analysed the data with substantial contributions from NLR and feedback from all other authors; AA and LB wrote the manuscript with feedback from all other authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 2 (XLS 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso, A., Pérez, J., Monroy, S. et al. Loss of Key Riparian Plant Species Impacts Stream Ecosystem Functioning. Ecosystems 24, 1436–1449 (2021). https://doi.org/10.1007/s10021-020-00592-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00592-7

Keywords

Navigation