Skip to main content
Log in

A benchmark strategy for the experimental measurement of contact fabric

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The mechanics of granular materials can be better understood by experimental measurement of fabric and its evolution under load. X-ray tomography is a tool that is increasingly used to acquire three-dimensional images and thus, enables such measurements. Our previous study on the metrology of interparticle contacts revealed that the most common approaches either fail to accurately measure contact fabric or introduce a strong bias. Methods to improve these measurements (i.e., the detection and orientation of contacts) were proposed and validated. This work develops a strategy to benchmark image analysis tools that can be used for the determination of contact fabric from tomographic images. The discrete element method is used to create and load a reference specimen for which the fabric and its evolution is precisely known. Chosen states of this synthetic specimen are turned into realistic images taking into account inherent image properties, such as the partial volume effect, blur and noise. The application of the image analysis tools on these images validates the findings of the metrological study and highlights the importance of addressing the identified shortcomings, i.e., the systematical over-detection of contacts and the strong bias of orientations when using common watersheds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. In this case realistic images are images that have similar properties as X-ray tomographies.

  2. Note: Due to the angular and non-convex shape of the Hostun sand grains, the description of the orientation however is not objective, as highlighted in [21]: when observing the same grains in different spatial resolutions, contacts might artificially be created (due to the PVE) or multiple contact points at which two grains are touching might be merged to appear as a single contact.

  3. This value corresponds to 0.7 for 32 bit floating point images, which was found to yield acceptable results in [21].

References

  1. Wiendieck, K.: Zur Struktur körniger Medien. Die Bautechnik 6, 196–199 (1967)

    Google Scholar 

  2. Calvetti, F., Combe, G., Lanier, J.: Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path. Mech. Cohesive Frict. Mater. 2(2), 121–163 (1997)

    Article  Google Scholar 

  3. Desrues, J., Viggiani, G.: Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int. J. Numer. Anal. Methods Geomech. 28(4), 279–321 (2004)

    Article  Google Scholar 

  4. Oda, M.: Initial fabrics and their relations to mechanical properties of granular material. Soils Found. 12(1), 17–36 (1972)

    Article  Google Scholar 

  5. Oda, M., Nemat-Nasser, S., Konishi, J.: Stress-induced anisotropy in granular masses. Soils Found. 25(3), 85–97 (1985)

    Article  Google Scholar 

  6. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  7. Dobry, R., Ng, T.-T.: Discrete modelling of stress–strain behaviour of granular media at small and large strains. Eng. Comput. 9, 129–143 (1992)

    Article  Google Scholar 

  8. O’Sullivan, C., Cui, L.: Micromechanics of granular material response during load reversals: combined DEM and experimental study. Powder Technol. 193(3), 289–302 (2009)

    Article  Google Scholar 

  9. Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E.: Level set discrete element method for three-dimensional computations with triaxial case study. J. Mech. Phys. Solids 91, 1–13 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Desrues, J., Chambon, R., Mokni, M., Mazerolle, F.: Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46(3), 529–546 (1996)

    Article  Google Scholar 

  11. Hall, S.A., Bornert, M., Desrues, J.: Discrete and continuum analysis of localised deformation in sand using X-ray \(\mu \)CT and volumetric digital image correlation. Géotechnique 60(5), 315–322 (2010)

    Article  Google Scholar 

  12. Butterfield, R., Harkness, R.M., Andrews, K.Z.: A stero-photogrammetric method for measuring displacement fields. Géotechnique 20(3), 308–314 (1970)

    Article  Google Scholar 

  13. Andò, E., Viggiani, G., Hall, S.A., Desrues, J.: Experimental micro-mechanics of granular media studied by X-ray tomography: recent results and challenges. Géotech. Lett. 3, 142–146 (2013)

    Article  Google Scholar 

  14. Andò, E., Hall, S.A., Viggiani, G., Desrues, J., Bésuelle, P.: Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotech. 7, 1–13 (2012)

    Article  Google Scholar 

  15. Alshibli, K.A., Alramahi, B.A.: Microscopic evaluation of strain distribution in granular materials during shear. J. Geotech. Geoenviron. Eng. 132(1), 80–91 (2006)

    Article  Google Scholar 

  16. Fonseca, J., O’Sullivan, C., Coop, M.R., Lee, P.D.: Quantifying the evolution of soil fabric during shearing using directional parameters. Géotechnique 63(6), 487–499 (2013)

    Article  Google Scholar 

  17. Fonseca, J., Nadimi, S., Reyes-Aldasoro, C.C., O’Sullivan, C., Coop, M.R.: Image-based investigation into the primary fabric of stress-transmitting particles in sand. Soils Found. 56(5), 818–834 (2016)

    Article  Google Scholar 

  18. Druckrey, A.M., Alshibli, K.A., Al-Raoush, R.I.: 3D characterization of sand particle-to-particle contact and morphology. Comput. Geotech. 74, 26–35 (2016)

    Article  Google Scholar 

  19. Cnudde, V., Boone, M.N.: High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci. Rev. 123, 1–17 (2013)

    Article  ADS  Google Scholar 

  20. Weis, S., Schröter, M.: Analyzing X-ray tomographies of granular packings. Rev. Sci. Instrum. 88, 051809 (2017)

    Article  ADS  Google Scholar 

  21. Wiebicke, M., Andò, E., Herle, I., Viggiani, G.: On the metrology of interparticle contacts in sand from X-ray tomography images. Meas. Sci. Technol. 28(12), 124007 (2017)

    Article  ADS  Google Scholar 

  22. Tengattini, A., Andò, E.: Kalisphera: an analytical tool to reproduce the partial volume effect of spheres imaged in 3D. Meas. Sci. Technol. 26(9), 095606 (2015)

    Article  ADS  Google Scholar 

  23. Fox, M., Aste, T., Weaire, D.: The pursuit of perfect packing. Math. Gaz. 85(503), 370 (2001)

    Article  Google Scholar 

  24. Song, C., Wang, P., Makse, H.A.: A phase diagram for jammed matter. Nat. Lett. 453, 629–632 (2008)

    Article  ADS  Google Scholar 

  25. Bi, D., Zhang, J., Chakraborty, B., Behringer, R.P.: Jamming by shear. Nature 480(7377), 355–358 (2011)

    Article  ADS  Google Scholar 

  26. Baule, A., Makse, H.A.: Fundamental challenges in packing problems: from spherical to non-spherical particles. Soft Matter 10(25), 4423–4429 (2014)

    Article  ADS  Google Scholar 

  27. Delaney, G.W., Di Matteo, T., Aste, T.: Combining tomographic imaging and DEM simulations to investigate the structure of experimental sphere packings. Soft Matter 6, 2992–3006 (2010)

    Article  ADS  Google Scholar 

  28. Shire, T., O’Sullivan, C., Taylor, H., Sim, W.: Measurement of constriction size distributions using three grain-scale methods. In: Harris, J., Whitehouse, R., Moxon, S. (eds.) Proceedings of the 8th International Conference on Scour and Erosion, pp. 1067–1073. Taylor & Francis Group, London (2016)

    Chapter  Google Scholar 

  29. Andò, E., Cailletaud, R., Roubin, E., Stamati, O., the spam contributors: Spam: the software for the practical analysis of materials. https://ttk.gricad-pages.univ-grenoble-alpes.fr/spam/ (2017)

  30. Wiebicke, M.: Benchmark analysis of synthetical images: source code and example DEM data. https://doi.org/10.25532/OPARA-26

  31. Iassonov, P., Gebrenegus, T., Tuller, M.: Segmentation of X-ray computed tomography images of porous materials: a crucial step for characterization and quantitative analysis of pore structures. Water Resour. Res. 45(9), 1–12 (2009)

    Article  Google Scholar 

  32. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  33. Meyer, F., Beucher, S.: Morphological segmentation. J. Vis. Commun. Image Represent. 1(1), 21–46 (1990)

    Article  Google Scholar 

  34. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1768–1783 (2006)

    Article  Google Scholar 

  35. van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T., the scikit-image contributors: Scikit-image: image processing in Python. PeerJ 2, e453 (2014)

  36. Andò, E.: Experimental investigation of microstructural changes in deforming granular media using X-ray tomography. Ph.D. thesis, Université de Grenoble (2013)

  37. Aste, T., Saadatfar, M., Senden, T.J.: Local and global relations between the number of contacts and density in monodisperse sphere packs. J. Stat. Mech. Theory Exp. 7, P07010 (2006)

    Google Scholar 

  38. Aste, T., Saadatfar, M., Senden, T.J.: Geometrical structure of disordered sphere packings. Phys. Rev. E 71, 061302 (2005)

    Article  ADS  Google Scholar 

  39. Schaller, F.M., Neudecker, M., Saadatfar, M., Delaney, G., Mecke, K., Schröder-Turk, G.E., Schröter, M.: Tomographic analysis of jammed ellipsoid packings. AIP Conf. Proc. 1542, 377–380 (2013)

    Article  ADS  Google Scholar 

  40. Schaller, F.M., Neudecker, M., Saadatfar, M., Delaney, G.W., Schröder-Turk, G.E., Schröter, M.: Local origin of global contact numbers in frictional ellipsoid packings. Phys. Rev. Lett. 114(15), 1–5 (2015)

    Article  Google Scholar 

  41. Šmilauer, V.: Woo documentation. https://woodem.org (2016)

  42. Jaquet, C., Andó, E., Viggiani, G., Talbot, H.: Estimation of separating planes between touching 3D objects using power watershed. In: International Symposium on Mathematical Morphology, vol. 11 (2013)

    Google Scholar 

  43. Viggiani, G., Andò, E., Jaquet, C., Talbot, H.: Identifying and following particle-to-particle contacts in real granular media: an experimental challenge. In: AIP Conference Proceedings, Powders and Grains 2013, vol. 60, pp. 60–65 (2013)

  44. Kanatani, K.-I.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22(2), 149–164 (1984)

    Article  MathSciNet  Google Scholar 

  45. Gu, X., Hu, J., Huang, M.: Anisotropy of elasticity and fabric of granular soils. Granul. Matter 19(2), 1–15 (2017)

    Article  ADS  Google Scholar 

  46. Hall, S.A., Wright, J., Pirling, T., Andò, E., Hughes, D.J., Viggiani, G.: Can intergranular force transmission be identified in sand? First results of spatially-resolved neutron and X-ray diffraction. Granul. Matter 13(3), 251–254 (2011)

    Article  Google Scholar 

  47. Hurley, R., Marteau, E., Ravichandran, G., Andrade, J.E.: Extracting inter-particle forces in opaque granular materials: beyond photoelasticity. J. Mech. Phys. Solids 63, 154–166 (2014)

    Article  ADS  Google Scholar 

  48. Hurley, R.C., Hall, S.A., Andrade, J.E., Wright, J.: Force measurements in stiff, 3D, opaque granular materials. In: EPJ Web of Conferences, Powders and Grains 2017, vol. 140 (2017)

    Article  Google Scholar 

  49. Imseeh, W.H., Alshibli, K.A.: 3D finite element modelling of force transmission and particle fracture of sand. Comput. Geotech. 94, 184–195 (2018)

    Article  Google Scholar 

  50. Imseeh, W.H., Druckrey, A.M., Alshibli, K.A.: 3D experimental quantification of fabric and fabric evolution of sheared granular materials using synchrotron micro-computed tomography. Granul. Matter 20, 24 (2018)

    Article  Google Scholar 

  51. Kuhn, M.R., Sun, W.C., Wang, Q.: Stress-induced anisotropy in granular materials: fabric, stiffness, and permeability. Acta Geotech. 10(4), 399–419 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We express our thanks to Félix Bertoni for implementing Kalisphera in C++. Laboratoire 3SR is part of the LabEx Tec 21 (Investissements d’Avenir—Grant Agreement No. ANR-11-LABX-0030). We thank the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for generous allocations of computing resources.

Funding

The research leading to these results has received funding from the German Research Foundation (DFG) No. 254872581 and from the European Research Council under the European Union’s Seventh Framework Program FP7-ERC-IDEAS Advanced Grant Agreement No. 290963 (SOMEF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Wiebicke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiebicke, M., Andò, E., Šmilauer, V. et al. A benchmark strategy for the experimental measurement of contact fabric. Granular Matter 21, 54 (2019). https://doi.org/10.1007/s10035-019-0902-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0902-x

Keywords

Navigation