Skip to main content
Log in

A micromechanics-based micromorphic model for granular materials and prediction on dispersion behaviors

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

One of the purposes in this study is to develop a micromorphic continuum model for granular materials based on a micromechanics approach. A symmetric curvature tensor is proposed in this model, and a symmetric couple stress tensor conjugated with the symmetric curvature tensor is derived. In addition, a symmetric stress tensor is obtained conjugating a symmetric strain tensor. The presented model provides a complete deformation pattern for granular materials by considering the decomposition for motions (displacement and rotation) of particles. Consequently, the macroscopic elastic constitutive relationships and constitutive moduli are derived in expressions of the microstructural information. Furthermore, the balance equations and boundary conditions are obtained for the presented micromorphic model. The other purpose in this study is to predict the dispersion behaviors of granular materials using the micromechanics-based micromorphic model. Five wave modes are predicted based on the presented model, including coupled transverse–rotational transverse, longitudinal, rotational longitudinal, transverse shear and rotational transverse waves. Investigating the propagations of these waves in the elastic granular media, the dispersion behaviors are predicted for coupled transverse–rotational transverse, longitudinal, rotational longitudinal waves, and the corresponding frequency band gaps are obtained.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Li, X.K., Chu, X.H., Feng, Y.T.: A discrete particle model and numerical modeling of the failure modes of granular materials. Eng. Comput. 22(8), 894–920 (2005)

    MATH  Google Scholar 

  2. Chu, X.H., Yu, C., Xiu, C.X., Xu, Y.J.: Two scale modeling of behaviors of granular structure: size effects and displacement fluctuations of discrete particle assembly. Struct. Eng. Mech. 55(2), 315–334 (2015)

    Google Scholar 

  3. Zhou, L.L., Chu, X.H., Zhang, X., Xu, Y.J.: Numerical investigations on breakage behaviour of granular materials under triaxial stresses. Geomech. Eng. 11(5), 639–655 (2016)

    Google Scholar 

  4. Xiu, C.X., Chu, X.H.: A micromechanics-based gradient model and the effect of high-order stress and particle rolling on localizations for granular materials. Granul. Matter 19(4), 87 (2017)

    Google Scholar 

  5. Torquato, S., Haslach, H.: Random heterogeneous materials: microstructure and macroscopic properties. Appl. Mech. Rev. 55(4), B62 (2002)

    Google Scholar 

  6. Liu, Q.P., Li, X.K., Chu, X.H.: The micro-directional model of Cosserat continuum description for granular materials. Chin. J. Comput. Mech. 28(5), 682–687 (2011). (in Chinese)

    Google Scholar 

  7. Koenders, M.A.: Wave propagation through elastic granular and granular auxetic materials. Phys. Status Solidi 246(9), 2083–2088 (2009)

    Google Scholar 

  8. Leonard, A., Ponson, L., Daraio, C.: Wave mitigation in ordered networks of granular chains. J. Mech. Phys. Solids 73(4336), 103–117 (2013)

    ADS  Google Scholar 

  9. Li, F., Anzel, P., Yang, J., Kevrekidis, P.G., Daraio, C.: Granular acoustic switches and logic elements. Nat. Commun. 5(10), 5311 (2014)

    ADS  Google Scholar 

  10. Xu, J., Zheng, B.: Stress wave propagation in two-dimensional buckyball lattice. Sci. Rep. 6, 37692 (2016)

    ADS  Google Scholar 

  11. Pal, R.K., Waymel, R.F., Geubelle, P.H., Lambros, J.: Tunable wave propagation in granular crystals by altering lattice network topology. J. Eng. Mater. Technol. 139(1), 011005 (2017)

    Google Scholar 

  12. Thomas, C.N., Papargyri-beskou, S., Mylonakis, G.: Wave dispersion in dry granular materials by the distinct element method. Soil Dyn. Earthq. Eng. 29(5), 888–897 (2009)

    Google Scholar 

  13. Chang, C.S., Gao, J.: Non-linear dispersion of plane wave in granular media. Int. J. Nonlin. Mech. 30(2), 111–128 (1995)

    MATH  Google Scholar 

  14. Suiker, A.S.J., Metrikine, A.V., Borst, R.D.: Comparison of wave propagation characteristics of the cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38(9), 1563–1583 (2001)

    MATH  Google Scholar 

  15. Ning, Z., Khoubani, A., Evans, T.M.: Shear wave propagation in granular assemblies. Comput. Geotech. 69, 615–626 (2015)

    Google Scholar 

  16. Mouraille, O., Luding, S.: Sound wave propagation in weakly polydisperse granular materials. Ultrasonics 48(6–7), 498–505 (2008)

    Google Scholar 

  17. Awasthi, A.P., Smith, K.J., Geubelle, P.H., Lambros, J.: Propagation of solitary waves in 2d granular media: a numerical study. Mech. Mater. 54(1), 100–112 (2012)

    Google Scholar 

  18. Pal, R.K., Geubelle, P.H.: Wave tailoring by precompression in confined granular systems. Phys. Rev. E 90(4), 042204 (2014)

    ADS  Google Scholar 

  19. Santibanez, F., Zuñiga, R., Melo, F.: Mechanical impulse propagation in a three-dimensional packing of spheres confined at constant pressure. Phys. Rev. E 93(1), 012908 (2016)

    ADS  Google Scholar 

  20. Wang, J., Chu, X.H., Zhang, J.B., Liu, H.: The effects of microstructure on wave velocity and wavefront in granular assemblies with binary-sized particles. Int. J. Solids Struct. 159, 156–162 (2019)

    Google Scholar 

  21. Wang, J., Chu, X.H.: Impact energy distribution and wavefront shape in granular material assemblies. Granul. Matter 21(2), 23 (2019)

    MathSciNet  Google Scholar 

  22. Wang, J., Chu, X.H., Jiang, Q.H., Xiu, C.X.: Energy transfer and influence of excitation frequency in granular materials from the perspective of Fourier transform. Powder Technol. 356, 493–499 (2019)

    Google Scholar 

  23. Mühlhaus, H.B., Oka, F.: Dispersion and wave propagation in discrete and continuous models for granular materials. Int. J. Solids Struct. 33(19), 2841–2858 (1996)

    MATH  Google Scholar 

  24. Maugin, G.A., Metrikine, A.V.: Mechanics of Generalized Continua: One Hundred Years After the Cosserats. Springer, Berlin (2010)

    MATH  Google Scholar 

  25. Merkel, A., Luding, S.: Enhanced micropolar model for wave propagation in ordered granular materials. Int. J. Solids Struct. 106–107, 91–105 (2017)

    Google Scholar 

  26. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)

    Google Scholar 

  27. Li, X.K., Liu, Q.P., Zhang, J.B.: A micro-macro homogenization approach for discrete particle assembly-Cosserat continuum modeling of granular materials. Int. J. Solids Struct. 47(2), 291–303 (2010)

    MATH  Google Scholar 

  28. Chang, J.F., Chu, X.H., Xu, Y.J.: Finite-element analysis of failure in transversely isotropic geomaterials. Int. J. Geomech. 15(6), 04014096 (2014)

    Google Scholar 

  29. Merkel, A., Tournat, V., Gusev, V.: Experimental evidence of rotational elastic waves in granular phononic crystals. Phys. Rev. Lett. 107(22), 225502 (2011)

    ADS  Google Scholar 

  30. Tordesillas, A., Muthuswamy, M., Walsh, S.D.C.: Mesoscale measures of nonaffine deformation in dense granular assemblies. J. Eng. Mech. 134(12), 1095–1113 (2008)

    Google Scholar 

  31. Grammenoudis, P., Tsakmakis, C.: Micromorphic continuum part I: strain and stress tensors and their associated rates. Int. J. Nonlin. Mech. 44(9), 943–956 (2009)

    Google Scholar 

  32. Lee, J.D., Wang, X.: Generalized micromorphic solids and fluids. Int. J. Eng. Sci. 49(12), 1378–1387 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Madeo, A., Neff, P., Ghiba, I.D., Placidi, L., Rosi, G.: Wave propagation in relaxed micromorphic continua: modelling metamaterials with frequency band-gaps. Continuum Mech. Therm. 27(4–5), 551–570 (2015)

    MATH  ADS  Google Scholar 

  34. Forest, S.: Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. Proc. Math. Phys. Eng. Sci. A 472(2188), 20150755 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Hütter, G.: Homogenization of a cauchy continuum towards a micromorphic continuum. J. Mech. Phys. Solids 99, 394–408 (2016)

    MathSciNet  ADS  Google Scholar 

  36. Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Continuum Mech. Therm. 28(1–2), 215–234 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  37. Poorsolhjouy, P., Misra, A.: Granular micromechanics based continuum model for grain rotations and grain rotation waves. J. Mech. Phys. Solids 129, 244–260 (2019)

    MathSciNet  ADS  Google Scholar 

  38. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    MathSciNet  MATH  Google Scholar 

  39. Eringen, A.C.: Microcontinuum field theories I: foundations and solids. Appl. Mech. Rev. 55(1), B15 (1999)

    MATH  Google Scholar 

  40. Ieşan, D.: On the theory of heat conduction in micromorphic continua. Int. J. Eng. Sci. 40(16), 1859–1878 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Lee, J.D., Chen, Y.: Constitutive relations of micromorphic thermoplasticity. Int. J. Eng. Sci. 41(3), 387–399 (2003)

    MathSciNet  MATH  Google Scholar 

  42. He, J.H.: A family of variational principles for linear micromorphic elasticity. Comput. Struct. 81(21), 2079–2085 (2003)

    MathSciNet  Google Scholar 

  43. Lee, J.D., Chen, Y., Eskandarian, A.: A micromorphic electromagnetic theory. Int. J. Solids Struct. 241(8), 2099–2110 (2004)

    MATH  Google Scholar 

  44. He, J.H.: A generalized variational principle in micromorphic thermoelasticity. Mech. Res. Commun. 32(1), 93–98 (2005)

    MATH  ADS  Google Scholar 

  45. Vernerey, F.J., Liu, W.K., Moran, B., Olson, G.: A micromorphic model for the multiple scale failure of heterogeneous materials. J. Mech. Phys. Solids 56(4), 1320–1347 (2008)

    MathSciNet  MATH  ADS  Google Scholar 

  46. Regueiro, R.A.: On finite strain micromorphic elastoplasticity. Int. J. Solids Struct. 47(6), 786–800 (2010)

    MATH  Google Scholar 

  47. Aslan, O., Cordero, N.M., Gaubert, A., Forest, S.: Micromorphic approach to single crystal plasticity and damage. Int. J. Eng. Sci. 49(12), 1311–1325 (2011)

    MathSciNet  MATH  Google Scholar 

  48. Chambon, R., Caillerie, D., Matsuchima, T.: Plastic continuum with microstructure, local second gradient theories for geomaterials: localization studies. Int. J. Solids Struct. 38(46), 8503–8527 (2001)

    MATH  Google Scholar 

  49. Dillard, T., Forest, S., Ienny, P.: Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. Eur. J. Mech. A-Solids 25(3), 526–549 (2006)

    MATH  ADS  Google Scholar 

  50. Vernerey, F.J., Liu, W.K., Moran, B.: Multi-scale micromorphic theory for hierarchical materials. J. Mech. Phys. Solids 55(12), 2603–2651 (2007)

    MathSciNet  MATH  ADS  Google Scholar 

  51. Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3(3), 285–308 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Misra, A., Poorsolhjouy, P.: Grain- and macro-scale kinematics for granular micromechanics based small deformation micromorphic continuum model. Mech. Res. Commun. 81, 1–6 (2017)

    Google Scholar 

  53. Nejadsadeghi, N., Placidi, L., Romeo, M., Misra, A.: Frequency band gaps in dielectric granular metamaterials modulated by electric field. Mech. Res. Commun. 95, 96–103 (2019)

    Google Scholar 

  54. Chang, C.S., Ma, L.: Modeling of discrete granulates as micropolar continua. J. Eng. Mech. 116(12), 2703–2721 (1990)

    Google Scholar 

  55. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    MATH  Google Scholar 

  56. Chang, C.S., Ma, L.: Elastic material constants for isotropic granular solids with particle rotation. Int. J. Solids Struct. 29(8), 1001–1018 (1992)

    MATH  Google Scholar 

  57. Hicher, P.Y., Chang, C.S.: Elastic model for partially saturated granular materials. J. Eng. Mech. 134(6), 505–513 (2008)

    Google Scholar 

  58. Tordesillas, A., Walsh, D.C.S.: Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol. 124(1–2), 106–111 (2002)

    Google Scholar 

  59. Kruyt, N.P.: Micromechanical study of dispersion and damping characteristics of granular materials. J. Mech. Mater. Struct. 7(4), 347–361 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors are pleased to acknowledge the support of this work by the National Natural Science Foundation of China through contract/Grant Nos. 11772237 and 11472196, and to acknowledge the open funds of the State Key Laboratory of Water Resources and Hydropower Engineering Science (Wuhan University) through contract/grant number 2015SGG03.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xihua Chu or Wenping Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Wave equations

Appendix: Wave equations

Considering the propagation of this plane wave along \(x_{1}\) axis, we suppose the kinematic measures as

$$\left\{ {\begin{array}{*{20}l} {\bar{u}_{i} = \bar{u}_{i} \left( {x_{1} , t} \right)} \hfill \\ {\varGamma_{i} = \varGamma_{i} \left( {x_{1} , t} \right)} \hfill \\ {\psi_{ij} = \psi_{ij} \left( {x_{1} , t} \right)} \hfill \\ {\varphi_{ij} = \varphi_{ij} \left( {x_{1} , t} \right)} \hfill \\ \end{array} } \right.$$
(A1)

Substituting Eq. (A1) into Eq. (51), wave equations are obtained as follows:

$$\begin{aligned} \rho \ddot{\bar{u}}_{1} & = \left( {C_{1111} + A_{1111} } \right)\bar{u}_{1,11} - \left( {A_{1111} \psi_{11,1} + A_{1122} \psi_{22,1} + A_{1133} \psi_{33,1} } \right) \\ \rho \ddot{\bar{u}}_{2} & = \left( {C_{2121} + A_{2121} } \right)\bar{u}_{2,11} - \left( {A_{2112} \psi_{12,1} + A_{2121} \psi_{21,1} } \right) - \left( {D_{3131} + B_{3131} } \right)\bar{u}_{2,1111} \\ & \quad + \left( {D_{3131} + B_{3131} } \right)\varGamma_{3,111} - \left( {B_{3113} \varphi_{13,11} + B_{3131} \varphi_{31,11} } \right) \\ \rho \ddot{\bar{u}}_{3} & = \left( {C_{3131} + A_{3131} } \right)\bar{u}_{3,11} - \left( {A_{3113} \psi_{13,1} + A_{3131} \psi_{31,1} } \right) - \left( {D_{2121} + B_{2121} } \right)\bar{u}_{3,1111} \\ & \quad - \left( {D_{2121} + B_{2121} } \right)\varGamma_{2,111} + \left( {B_{2112} \varphi_{12,11} + B_{2121} \varphi_{21,11} } \right) \\ \end{aligned}$$
(A2)
$$\begin{aligned} \rho^{{\prime }} I^{{\prime }} \ddot{\psi }_{11} & = A_{1111} \bar{u}_{1,1} - \left( {A_{1111} \psi_{11} + A_{1122} \psi_{22} + A_{1133} \psi_{33} } \right) \\ \rho^{{\prime }} I^{{\prime }} \ddot{\psi }_{22} & = A_{2211} \bar{u}_{1,1} - \left( {A_{2211} \psi_{11} + A_{2222} \psi_{22} + A_{2233} \psi_{33} } \right) \\ \rho^{{\prime }} I^{{\prime }} \ddot{\psi }_{33} & = A_{3311} \bar{u}_{1,1} - \left( {A_{3311} \psi_{11} + A_{3322} \psi_{22} + A_{3333} \psi_{33} } \right) \\ \rho^{{\prime }} I^{{\prime }} \ddot{\psi }_{12} & = A_{1221} \bar{u}_{2,1} - \left( {A_{1212} \psi_{12} + A_{1221} \psi_{21} } \right) \\ \rho^{{\prime }} I^{{\prime }} \ddot{\psi }_{13} & = A_{1331} \bar{u}_{3,1} - \left( {A_{1313} \psi_{13} + A_{1331} \psi_{31} } \right) \\ \rho^{{\prime }} I^{{\prime }} \ddot{\psi }_{21} & = A_{2121} \bar{u}_{2,1} - \left( {A_{2112} \psi_{12} + A_{2121} \psi_{21} } \right) \\ \rho^{{\prime }} I^{{\prime }} \ddot{\psi }_{23} & = - \left( {A_{2323} \psi_{23} + A_{2332} \psi_{32} } \right) \\ \rho^{{\prime }} I^{{\prime }} \ddot{\psi }_{31} & = A_{3131} \bar{u}_{3,1} - \left( {A_{3113} \psi_{13} + A_{3131} \psi_{31} } \right) \\ \rho^{{\prime }} I^{{\prime }} \ddot{\psi }_{32} & = - \left( {A_{3223} \psi_{23} + A_{3232} \psi_{32} } \right) \\ \end{aligned}$$
(A3)
$$\begin{aligned} \rho I\ddot{\varGamma }_{1} & = \left( {D_{1111} + B_{1111} } \right)\varGamma_{1,11} - \left( {B_{1111} \varphi_{11,1} + B_{1122} \varphi_{22,1} + B_{1133} \varphi_{33,1} } \right) \\ \rho I\ddot{\varGamma }_{2} & = \left( {D_{2121} + B_{2121} } \right)\varGamma_{2,11} - \left( {B_{2112} \varphi_{12,1} + B_{2121} \varphi_{21,1} } \right) + \left( {D_{2121} + B_{2121} } \right)\bar{u}_{3,111} \\ \rho I\ddot{\varGamma }_{3} & = \left( {D_{3131} + B_{3131} } \right)\varGamma_{3,11} - \left( {B_{3113} \varphi_{13,1} + B_{3131} \varphi_{31,1} } \right) - \left( {D_{3131} + B_{3131} } \right)\bar{u}_{2,111} \\ \end{aligned}$$
(A4)
$$\begin{aligned} \rho^{\prime } J^{\prime } \ddot{\varphi }_{11} & = B_{1111} \varGamma_{1,1} - \left( {B_{1111} \varphi_{11} + B_{1122} \varphi_{22} + B_{1133} \varphi_{33} } \right) \\ \rho^{\prime } J^{\prime } \ddot{\varphi }_{22} & = B_{2211} \varGamma_{1,1} - \left( {B_{2211} \varphi_{11} + B_{2222} \varphi_{22} + B_{2233} \varphi_{33} } \right) \\ \rho^{\prime } J^{\prime } \ddot{\varphi }_{33} & = B_{3311} \varGamma_{1,1} - \left( {B_{3311} \varphi_{11} + B_{3322} \varphi_{22} + B_{3333} \varphi_{33} } \right) \\ \rho^{\prime } J^{\prime } \ddot{\varphi }_{12} & = B_{1221} \varGamma_{2,1} - \left( {B_{1212} \varphi_{12} + B_{1221} \varphi_{21} } \right) + B_{1221} \bar{u}_{3,11} \\ \rho^{\prime } J^{\prime } \ddot{\varphi }_{13} & = B_{1331} \varGamma_{3,1} - \left( {B_{1313} \varphi_{13} + B_{1331} \varphi_{31} } \right) - B_{1331} \bar{u}_{2,11} \\ \rho^{\prime } J^{\prime } \ddot{\varphi }_{21} & = B_{2121} \varGamma_{2,1} - \left( {B_{2112} \varphi_{12} + B_{2121} \varphi_{21} } \right) + B_{2121} \bar{u}_{3,11} \\ \rho^{\prime } J^{\prime } \ddot{\varphi }_{23} & = - \left( {B_{2323} \varphi_{23} + B_{2332} \varphi_{32} } \right) \\ \rho^{\prime } J^{\prime } \ddot{\varphi }_{31} & = B_{3131} \varGamma_{3,1} - \left( {B_{3113} \varphi_{13} + B_{3131} \varphi_{31} } \right) - B_{3131} \bar{u}_{2,11} \\ \rho^{\prime } J^{\prime } \ddot{\varphi }_{32} & = - \left( {B_{3223} \varphi_{23} + B_{3232} \varphi_{32} } \right) \\ \end{aligned}$$
(A5)

The wave equations can be divided into 8 groups as followings:

Group A:

$$\begin{aligned} \rho \ddot{\bar{u}}_{2} & = \left( {C_{2121} + A_{2121} } \right)\bar{u}_{2,11} - \left( {A_{2112} \psi_{12,1} + A_{2121} \psi_{21,1} } \right) - \left( {D_{3131} + B_{3131} } \right)\bar{u}_{2,1111} \\ & \quad + \left( {D_{3131} + B_{3131} } \right)\varGamma_{3,111} - \left( {B_{3113} \varphi_{13,11} + B_{3131} \varphi_{31,11} } \right) \\ \rho I\ddot{\varGamma }_{3} & = \left( {D_{3131} + B_{3131} } \right)\varGamma_{3,11} - \left( {B_{3113} \varphi_{13,1} + B_{3131} \varphi_{31,1} } \right) - \left( {D_{3131} + B_{3131} } \right)\bar{u}_{2,111} \\ \rho^{\prime } I^{\prime } \ddot{\psi }_{12} & = A_{1221} \bar{u}_{2,1} - \left( {A_{1212} \psi_{12} + A_{1221} \psi_{21} } \right) \\ \rho^{\prime } I^{\prime } \ddot{\psi }_{21} & = A_{2121} \bar{u}_{2,1} - \left( {A_{2112} \psi_{12} + A_{2121} \psi_{21} } \right) \\ \rho^{\prime } J^{\prime } \ddot{\varphi }_{13} & = B_{1331} \varGamma_{3,1} - \left( {B_{1313} \varphi_{13} + B_{1331} \varphi_{31} } \right) - B_{1331} \bar{u}_{2,11} \\ \rho^{\prime } J^{\prime } \ddot{\varphi }_{31} & = B_{3131} \varGamma_{3,1} - \left( {B_{3113} \varphi_{13} + B_{3131} \varphi_{31} } \right) - B_{3131} \bar{u}_{2,11} \\ \end{aligned}$$
(A6)

Group B:

$$\begin{aligned} \rho \ddot{\bar{u}}_{3} & = \left( {C_{3131} + A_{3131} } \right)\bar{u}_{3,11} - \left( {A_{3113} \psi_{13,1} + A_{3131} \psi_{31,1} } \right) - \left( {D_{2121} + B_{2121} } \right)\bar{u}_{3,1111} \\ & \quad - \left( {D_{2121} + B_{2121} } \right)\varGamma_{2,111} + \left( {B_{2112} \varphi_{12,11} + B_{2121} \varphi_{21,11} } \right) \\ \rho I\ddot{\varGamma }_{2} & = \left( {D_{2121} + B_{2121} } \right)\varGamma_{2,11} - \left( {B_{2112} \varphi_{12,1} + B_{2121} \varphi_{21,1} } \right) + \left( {D_{2121} + B_{2121} } \right)\bar{u}_{3,111} \\ \rho^{\prime } I^{\prime } \ddot{\psi }_{13} & = A_{1331} \bar{u}_{3,1} - \left( {A_{1313} \psi_{13} + A_{1331} \psi_{31} } \right) \\ \rho^{\prime } I^{\prime } \ddot{\psi }_{31} & = A_{3131} \bar{u}_{3,1} - \left( {A_{3113} \psi_{13} + A_{3131} \psi_{31} } \right) \\ \rho^{\prime } J^{\prime } \ddot{\varphi }_{12} & = B_{1221} \varGamma_{2,1} - \left( {B_{1212} \varphi_{12} + B_{1221} \varphi_{21} } \right) + B_{1221} \bar{u}_{3,11} \\ \rho^{\prime } J^{\prime } \ddot{\varphi }_{21} & = B_{2121} \varGamma_{2,1} - \left( {B_{2112} \varphi_{12} + B_{2121} \varphi_{21} } \right) + B_{2121} \bar{u}_{3,11} \\ \end{aligned}$$
(A7)

Group C:

$$\begin{aligned} \rho \ddot{\bar{u}}_{1} & = \left( {C_{1111} + A_{1111} } \right)\bar{u}_{1,11} - \left( {A_{1111} \psi_{11,1} + A_{1122} \psi_{22,1} + A_{1133} \psi_{33,1} } \right) \\ \rho^{{\prime }} I^{{\prime }} \ddot{\psi }_{11} & = A_{1111} \bar{u}_{1,1} - \left( {A_{1111} \psi_{11} + A_{1122} \psi_{22} + A_{1133} \psi_{33} } \right) \\ \rho^{{\prime }} I^{{\prime }} \ddot{\psi }_{22} & = A_{2211} \bar{u}_{1,1} - \left( {A_{2211} \psi_{11} + A_{2222} \psi_{22} + A_{2233} \psi_{33} } \right) \\ \rho^{{\prime }} I^{{\prime }} \ddot{\psi }_{33} & = A_{3311} \bar{u}_{1,1} - \left( {A_{3311} \psi_{11} + A_{3322} \psi_{22} + A_{3333} \psi_{33} } \right) \\ \end{aligned}$$
(A8)

Group D:

$$\begin{aligned} \rho I\ddot{\varGamma }_{1} & = \left( {D_{1111} + B_{1111} } \right)\varGamma_{1,11} - \left( {B_{1111} \varphi_{11,1} + B_{1122} \varphi_{22,1} + B_{1133} \varphi_{33,1} } \right) \\ \rho^{\prime } J^{\prime } \ddot{\varphi }_{11} & = B_{1111} \varGamma_{1,1} - \left( {B_{1111} \varphi_{11} + B_{1122} \varphi_{22} + B_{1133} \varphi_{33} } \right) \\ \rho^{\prime } J^{\prime } \ddot{\varphi }_{22} & = B_{2211} \varGamma_{1,1} - \left( {B_{2211} \varphi_{11} + B_{2222} \varphi_{22} + B_{2233} \varphi_{33} } \right) \\ \rho^{\prime } J^{\prime } \ddot{\varphi }_{33} & = B_{3311} \varGamma_{1,1} - \left( {B_{3311} \varphi_{11} + B_{3322} \varphi_{22} + B_{3333} \varphi_{33} } \right) \\ \end{aligned}$$
(A9)

Group E:

$$\begin{aligned} \rho^{{\prime }} I^{{\prime }} \ddot{\psi }_{22} & = A_{2211} \bar{u}_{1,1} - \left( {A_{2211} \psi_{11} + A_{2222} \psi_{22} + A_{2233} \psi_{33} } \right) \\ \rho^{{\prime }} I^{{\prime }} \ddot{\psi }_{33} & = A_{3311} \bar{u}_{1,1} - \left( {A_{3311} \psi_{11} + A_{3322} \psi_{22} + A_{3333} \psi_{33} } \right) \\ \end{aligned}$$
(A10)

Group F:

$$\begin{aligned} \rho^{\prime } J^{\prime } \ddot{\varphi }_{22} & = B_{2211} \varGamma_{1,1} - \left( {B_{2211} \varphi_{11} + B_{2222} \varphi_{22} + B_{2233} \varphi_{33} } \right) \\ \rho^{\prime } J^{\prime } \ddot{\varphi }_{33} & = B_{3311} \varGamma_{1,1} - \left( {B_{3311} \varphi_{11} + B_{3322} \varphi_{22} + B_{3333} \varphi_{33} } \right) \\ \end{aligned}$$
(A11)

Group G:

$$\begin{aligned} \rho^{{\prime }} I^{{\prime }} \ddot{\psi }_{23} & = - \left( {A_{2323} \psi_{23} + A_{2332} \psi_{32} } \right) \\ \rho^{{\prime }} I^{{\prime }} \ddot{\psi }_{32} & = - \left( {A_{3223} \psi_{23} + A_{3232} \psi_{32} } \right) \\ \end{aligned}$$
(A12)

Group H:

$$\begin{aligned} \rho^{{\prime }} J^{{\prime }} \ddot{\varphi }_{23} & = - \left( {B_{2323} \varphi_{23} + B_{2332} \varphi_{32} } \right) \\ \rho^{{\prime }} J^{{\prime }} \ddot{\varphi }_{32} & = - \left( {B_{3223} \varphi_{23} + B_{3232} \varphi_{32} } \right) \\ \end{aligned}$$
(A13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiu, C., Chu, X., Wang, J. et al. A micromechanics-based micromorphic model for granular materials and prediction on dispersion behaviors. Granular Matter 22, 74 (2020). https://doi.org/10.1007/s10035-020-01044-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01044-8

Keywords

Navigation