Skip to main content
Log in

Prebiotic effects of structurally identified galacto-oligosaccharides produced by β-galactosidase from Aspergillus oryzae

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Novel galacto-oligosaccharides were produced by β-galactosidase from Aspergillus oryzae using lactose, and their structural characteristics and prebiotic effects were examined. Highly purified oligosaccharide fraction (HP) was prepared from a crude one (low purified, LP) by gel-filtration on Biogel P-2 column, which was further purified into S1 and S2 fractions by prep-HPLC. S1 and S2 were comprised of galactose (Gal) and glucose (Glc) in the ratio of 2 to 1. ESI-MS-MS and methylation analysis indicated that S1 and S2 were trisaccharides with structures of β-d-Galp-(1,6)-β-d-Galp-(1,4)-β-d-Glcp and β-d-Galp-(1,3)-β-d-Galp-(1,4)-β-d-Glcp, respectively. Herein, LP and HP were used as the carbon sources for determining the prebiotic activity score of probiotics including Lactobacillus and Bifidobacterium species. LP and HP at 1% and 2% (w/v) were observed at all positive scores on several probiotics, especially, B. infantis ATCC 15697 at the 2% level of HP (p<0.05). Consequently, structurally identified trisaccharides of HP can significantly enhance the growth of B. infantis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. Tuohy KM, Probert HM, Smejkal CW, Gibson GR. Using probiotics and prebiotics to improve gut health. Drug Discov. Today 8: 692–700 (2003)

    Article  Google Scholar 

  2. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 125: 1401–1412 (1995)

    CAS  Google Scholar 

  3. Manning TS, Gibson GR. Prebiotics. Best Pract. Res. Cl. Ga. 18: 287–298 (2004)

    Article  Google Scholar 

  4. Langlands SJ, Hopkins MJ, Coleman N, Cummings JH. Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel. Gut 53: 1610–1616 (2004)

    Article  CAS  Google Scholar 

  5. Macfarlane S, Macfarlane GT, Cummings JH. Review article: Prebiotics in the gastrointestinal tract. Aliment Pharm. Therap. 24: 701–714 (2006)

    Article  CAS  Google Scholar 

  6. Probert HM, Gibson GR. Investigating the prebiotic and gasgenerating effects of selected carbohydrates on the human colonic microflora. Lett. Appl. Microbiol. 35: 473–480 (2002)

    Article  CAS  Google Scholar 

  7. Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 17: 259–275 (2004)

    Article  CAS  Google Scholar 

  8. Saavedra JM, Tschernia A. Human studies with probiotics and prebiotics: Clinical implications. Brit. J. Nutr. 87: S241–S246 (2002)

    Article  CAS  Google Scholar 

  9. Collins MD, Gibson GR. Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 69: 1052S–1057S (1999)

    CAS  Google Scholar 

  10. Macfarlane G, Steed H, Macfarlane S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microb. 104: 305–344 (2007)

    Google Scholar 

  11. Rycroft CE, Jones MR, Gibson GR, Rastall RA. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J. Appl. Microb. 91: 878–887 (2001)

    Article  CAS  Google Scholar 

  12. Kocourek J, Ballou CE. Method for fingerprinting yeast cell wall mannans. J. Bacteriol. 100: 1175–1181 (1969)

    CAS  Google Scholar 

  13. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356 (1956)

    Article  CAS  Google Scholar 

  14. Jones TM, Albersheim P. A gas chromatography method for the determination of aldose and uronic acid constituents of plant cell wall polysaccharide. Plant Physiol. 49: 926–936 (1972)

    Article  CAS  Google Scholar 

  15. Lee CH, Oh SW, Kim IH, Kim YE, Hwang JH, Yu KW. Chemical properties and immunological activities of hot-water extract from leaves of saltwort. Food Sci. Biotechnol. 13: 167–171 (2004)

    CAS  Google Scholar 

  16. Hakomori S. A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J. Biochem. 55: 205–208 (1964)

    CAS  Google Scholar 

  17. Choi HD, Seog HM, Choi IW, Lee CH, Shin KS. Molecular structure of β-glucans isolated from non-waxy and waxy barley. Food Sci. Biotechnol. 13: 744–748 (2004)

    CAS  Google Scholar 

  18. Waeghe TJ, Darvill AG, McNeil M, Albersheim P. Determination by methylation analysis of the glycosyl linkage compositions of microgram quantities of complex carbohydrates. Carbohyd. Res. 123: 281–304 (1983)

    Article  CAS  Google Scholar 

  19. Sweet DP, Shapiro RH, Albersheim P. Quantitative analysis by various G.L.C. response-factor theories for partially methylated and partially ethylated alditol acetates. Carbohyd. Res. 40: 217–225 (1975)

    Article  CAS  Google Scholar 

  20. Huebner J, Wehling RL, Parkhurst A, Hutkins RW. Effect of processing conditions on the prebiotic activity of commercial prebiotics. Int. Dairy J. 18: 287–293 (2008)

    Article  CAS  Google Scholar 

  21. Gibson GR. Prebiotics as gut microflora management tools. J. Clin. Gastroenterol. 42: 75–79 (2008)

    Article  Google Scholar 

  22. Rabiu BA, Jay AJ, Gibson GR, Rastall RA. Synthesis and fermentation properties of novel galacto-oligosaccharides by β-galactosidases from Bifidobacterium species. Appl. Environ. Microb. 67: 2526–2530 (2001)

    Article  CAS  Google Scholar 

  23. Sako T, Matsumoto K, Tanaka R. Recent progress on research and application of non-digestible galacto-oligosaccharides. Int. Dairy J. 9: 69–80 (1999)

    Article  CAS  Google Scholar 

  24. Santos R, Simiqueli AP, Pastore GM. Produção de galactooligossacarídeo por Scopulariopis sp. Ciência e Tecnologia de Alimentos 29: 682–689 (2009)

    Article  Google Scholar 

  25. Golowczyc M, Vera C, Santos M, Guerrero C, Carasi P, Illanes A, Gómez-Zavaglia A, Tymczyszyn E. Use of whey permeate containing in situ synthesised galacto-oligosaccharides for the growth and preservation of Lactobacillus plantarum. J. Dairy Res. 80: 374–381 (2013)

    Article  CAS  Google Scholar 

  26. Guerrero C, Vera C, Illanes A. Optimisation of synthesis of oligosaccharides derived from lactulose (fructosyl-galactooligosaccharides) with β-galactosidases of different origin. Food Chem. 138: 2225–2232 (2013)

    Article  CAS  Google Scholar 

  27. Vera C, Guerrero C, Conejeros R, Illanes A. Synthesis of galactooligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme Microb. Technol. 50: 188–194 (2012)

    Article  CAS  Google Scholar 

  28. Vera C, Guerrero C, Illanes A, Conejeros R. A pseudo steady–state model for galacto-oligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. Biotechnol. Bioeng. 108: 2270–2279 (2011)

    Article  CAS  Google Scholar 

  29. Vera C, Guerrero C, Illanes A. Determination of the transgalactosylation activity of Aspergillus oryzae β-galactosidase: Effect of pH, temperature, and galactose and glucose concentrations. Carbohyd. Res. 346: 745–752 (2011)

    Article  CAS  Google Scholar 

  30. Damaskos D, Kolios G. Probiotics and prebiotics in inflammatory bowel disease: Microflora on the scope. Brit. J. Clin. Pharmacol. 65: 453–467 (2008)

    Article  Google Scholar 

  31. Malinen E, Matto J, Salmitie M, Alander M, Saarela M, Palva A. PCR-ELISA-II: Analysis of Bifidobacterium populations in human faecal samples from a consumption trial with Bifidobacterium lactis Bb-12 and a galacto–oligosaccharide preparation. Syst. Appl. Microbiol. 25: 249–258 (2002)

    CAS  Google Scholar 

  32. Jaskari J, Kontula P, Siitonen A, Jousimies-Somer H, Mattila-Sandholm T, Poutanen K. Oat beta-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains. Appl. Microbiol. Biot. 49: 175–181 (1998)

    Article  CAS  Google Scholar 

  33. Gopal PK, Sullivan PA, Smart JB. Utilisation of galactooligosaccharides as selective substrates for growth by lactic acid bacteria including Bifidobacterium lactis DR10 and Lactobacillus rhamnosus DR20. Int. Dairy J. 11: 19–25 (2001)

    Article  CAS  Google Scholar 

  34. Van Laere KMJ, Abee T, Schols HA, Beldman G, Voragen AGJ. Characterisation of a novel β-galactosidase from Bifidobacterium adolescentis DSM 20083 active towards transgalactooligosaccharides. Appl. Environ. Microb. 66: 1379–1384 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Soon Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.Y., Jeong, HS., Ahn, SW. et al. Prebiotic effects of structurally identified galacto-oligosaccharides produced by β-galactosidase from Aspergillus oryzae . Food Sci Biotechnol 23, 823–830 (2014). https://doi.org/10.1007/s10068-014-0111-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0111-7

Keywords

Navigation