Skip to main content
Log in

Coping with a changing soundscape: avoidance, adjustments and adaptations

  • Review
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Since the industrial age, background anthropogenic noise has become a pervasive feature of many habitable environments. This relatively recent environmental feature can be particularly challenging for organisms that use acoustic forms of communication due to its propensity for masking and decreasing the potential acoustic space of signals. Furthermore, anthropogenic noise may affect biological processes including animal interactions, physiological and behavioural responses to stimuli and cognitive development. However, animals’ cognitive abilities may enable them to cope with high levels of anthropogenic noise through learning, the employment of acoustic and behavioural flexibility as well as the use of multi-modal sensory systems. We are only just beginning to understand how neural structures, endocrine systems and behaviour are mechanistically linked in these scenarios, providing us with information we can use to mitigate deleterious effects of pervasive noise on wildlife, along with highlighting the remarkable adaptability of animals to an increasingly anthropogenic world. In this review, I will focus mainly on birds, due to the amount of literature on the topic, and survey recent advancements made in two main spheres: (1) how anthropogenic noise affects cognitive processes and (2) how cognition enables animals to cope with increasingly noisy environments. I will be highlighting current gaps in our knowledge, such as how noise might impact behavioural traits such as predation, as well as how noise causes physical damage to neurotransmitters and affects stress levels, in order to direct future studies on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alario P, Gamallo A, Beato MJ, Trancho G (1987) Body weight gain, food intake and adrenal development in chronic noise stressed rats. Physiol Behav 40:29–32. doi:10.1016/0031-9384(87)90181-8

    Article  CAS  PubMed  Google Scholar 

  • Arévalo JE, Newhard K (2011) Traffic noise affects forest bird species in a protected tropical forest. Rev Biol Trop 59:969–980

    PubMed  Google Scholar 

  • Arroyo-Solís A, Castillo JM, Figueroa E, López-Sánchez JL, Slabbekoorn H (2013) Experimental evidence for an impact of anthropogenic noise on dawn chorus timing in urban birds. J Avian Biol. doi:10.1111/j.1600-048X.2012.05796.x

    Google Scholar 

  • Barber JR, Crooks KR, Fristrup KM (2010) The costs of chronic noise exposure for terrestrial organisms. Trends Ecol Evol 25:180–189. doi:10.1016/j.tree.2009.08.002

    Article  PubMed  Google Scholar 

  • Bee MA, Micheyl C (2008) The cocktail party problem: what is it? How can it be solved? And why should animal behaviorists study it? J Comp Psychol 122:235–251. doi:10.1037/0735-7036.122.3.235

    Article  PubMed  PubMed Central  Google Scholar 

  • Bermudez-Cuamatzin E, Rios-Chelen AA, Gil D, Garcia CM (2011) Experimental evidence for real-time song frequency shift in response to urban noise in a passerine bird. Biol Lett 7:36–38. doi:10.1098/rsbl.2010.0437

    Article  PubMed  Google Scholar 

  • Blickley JL, Patricelli GL (2010) Impacts of anthropogenic noise on wildlife: research priorities for the development of standards and mitigation. J Int Wildl Law Policy 13:274–292. doi:10.1080/13880292.2010.524564

    Article  Google Scholar 

  • Blickley JL, Blackwood D, Patricelli GL (2012a) Experimental evidence for the effects of chronic anthropogenic noise on abundance of greater sage-grouse at leks. Conserv Biol 26:461–471. doi:10.1111/j.1523-1739.2012.01840.x

    Article  PubMed  Google Scholar 

  • Blickley JL et al (2012b) Experimental chronic noise is related to elevated fecal corticosteroid metabolites in lekking male greater sage-grouse (Centrocercus urophasianus). PLoS ONE 7:e50462. doi:10.1371/journal.pone.0050462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brainard MS, Doupe AJ (2002) What songbirds teach us about learning. Nature 417:351–358. doi:10.1038/417351a

    Article  CAS  PubMed  Google Scholar 

  • Brumm H, Slabbekoorn H (2005) Acoustic communication in noise. In: Slater PJB, Snowdon CT, Roper TJ, Brockmann HJ, Naguib M (eds) Advances in the study of behavior, vol 35. Academic Press, New York, pp 151–209. doi:10.1016/S0065-3454(05)35004-2

    Google Scholar 

  • Brumm H, Zollinger SA (2011) The evolution of the Lombard effect: 100 years of psychoacoustic research. Behaviour 148:1173–1198. doi:10.1163/000579511X605759

    Article  Google Scholar 

  • Brumm H, Voss K, Kollmer I, Todt D (2004) Acoustic communication in noise: regulation of call characteristics in a New World monkey. J Exp Biol 207:443–448

    Article  PubMed  Google Scholar 

  • Buchanan KL, Leitner S, Spencer KA, Goldsmith AR, Catchpole CK (2004) Developmental stress selectively affects the song control nucleus HVC in the zebra finch. Proc R Soc B Biol Sci 271:2381–2386. doi:10.1098/rspb.2004.2874

    Article  Google Scholar 

  • Bucur V (2006) Urban forest acoustics. Springer, Heidelberg

    Google Scholar 

  • Cardoso GC, Atwell JW (2011) Directional cultural change by modification and replacement of memes. Evolution 65:295–300. doi:10.1111/j.1558-5646.2010.01102.x

    Article  PubMed  Google Scholar 

  • Chevin L-M, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8:e1000357. doi:10.1371/journal.pbio.1000357

    Article  PubMed  PubMed Central  Google Scholar 

  • Clobert J, Galliard L, Cote J, Meylan S, Massot M (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209

    Article  PubMed  Google Scholar 

  • Conrad CD (2010) A critical review of chronic stress effects on spatial learning and memory. Prog Neuro-Psychopharmacol Biol Psychiatry 34:742–755. doi:10.1016/j.pnpbp.2009.11.003

    Article  Google Scholar 

  • Crino OL, Johnson EE, Blickley JL, Patricelli GL, Breuner CW (2013) Effects of experimentally elevated traffic noise on nestling white-crowned sparrow stress physiology, immune function and life history. J Exp Biol 216:2055–2062. doi:10.1242/jeb.081109

    Article  PubMed  Google Scholar 

  • Cui B, Wu M, She X (2009) Effects of chronic noise exposure on spatial learning and memory of rats in relation to neurotransmitters and NMDAR2B alteration in the hippocampus. J Occup Health 51:152–158. doi:10.1539/joh.L8084

    Article  PubMed  Google Scholar 

  • Derryberry EP (2009) Ecology shapes birdsong evolution: variation in morphology and habitat explains variation in white-crowned sparrow song. Am Nat 174:24–33. doi:10.1086/599298

    Article  PubMed  Google Scholar 

  • Dooling RJ (2011) The effects of noise on birds. J Acoust Soc Am 129:2395. doi:10.1121/1.3587789

    Article  Google Scholar 

  • Dooling RJ, Saunders JC (1974) Threshold shift produced by continuous noise exposure in the parakeet (Melopsittacus undulatus). J Acoust Soc Am 55:S77–S77. doi:10.1121/1.1919943

    Article  Google Scholar 

  • Dukas R (1998) Cognitive ecology: the evolutionary ecology of information processing and decision making, vol 1. University of Chicago Press, Chicago

    Google Scholar 

  • Evans GW, Bullinger M, Hygge S (1998) Chronic noise exposure and physiological response: a prospective study of children living under environmental stress. Psychol Sci 9:75–77. doi:10.1111/1467-9280.00014

    Article  Google Scholar 

  • Francis CD, Barber JR (2013) A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front Ecol Environ 11:305–313. doi:10.1890/120183

    Article  Google Scholar 

  • Francis CD, Ortega CP, Cruz A (2009) Noise pollution changes avian communities and species interactions. Curr Biol 19:1415–1419. doi:10.1016/j.cub.2009.06.052

    Article  CAS  PubMed  Google Scholar 

  • Francis CD, Ortega CP, Cruz A (2011) Noise pollution filters bird communities based on vocal frequency. PLoS ONE 6:e27052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frid A, Dill LM (2002) Human-caused disturbance stimuli as a form of predation risk. Ecol Soc 6:11

    Google Scholar 

  • Fuller RA, Warren PH, Gaston KJ (2007) Daytime noise predicts nocturnal singing in urban robins. Biol Lett 3:368–370. doi:10.1098/rsbl.2007.0134

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Rutledge EJ, Narins PM (2001) Shared acoustic resources in an old world frog community. Herpetologica 57:104–116

    Google Scholar 

  • Grant BR, Grant PR (2010) Songs of Darwin’s finches diverge when a new species enters the community. Proc Nat Acad Sci 107:20156–20163. doi:10.1073/pnas.1015115107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunst ML, Rotenberry JT, Grunst AS (2014) Variation in adrenocortical stress physiology and condition metrics within a heterogeneous urban environment in the song sparrow Melospiza melodia. J Avian Biol 45:574–583

    Article  Google Scholar 

  • Habib L, Bayne EM, Boutin S (2007) Chronic industrial noise affects pairing success and age structure of ovenbirds Seiurus aurocapilla. J Appl Ecol 44:176–184. doi:10.1111/j.1365-2664.2006.01234.x

    Article  Google Scholar 

  • Halfwerk W, Slabbekoorn H (2009) A behavioural mechanism explaining noise-dependent frequency use in urban birdsong. Anim Behav 78:1301–1307

    Article  Google Scholar 

  • Halfwerk W, Slabbekoorn H (2014) The impact of anthropogenic noise on avian communication and fitness. In: Gil D, Brumm H (eds) Avian urban ecology. Oxford University Press, Oxford, pp 84–97

    Google Scholar 

  • Halfwerk W, Bot S, Buikx J, van der Velde M, Komdeur J, ten Cate C, Slabbekoorn H (2011a) Low-frequency songs lose their potency in noisy urban conditions. Proc Nat Acad Sci 108:14549–14554. doi:10.1073/pnas.1109091108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halfwerk W, Holleman LJM, Lessells CM, Slabbekoorn H (2011b) Negative impact of traffic noise on avian reproductive success. J Appl Ecol 48:210–219. doi:10.1111/j.1365-2664.2010.01914.x

    Article  Google Scholar 

  • Hashino E, Sokabe M, Miyamoto K (1988) Frequency specific susceptibility to acoustic trauma in the budgerigar (Melopsittacus undulatus). J Acoust Soc Am 83:2450–2453. doi:10.1121/1.396325

    Article  CAS  PubMed  Google Scholar 

  • Hildén O (1965) Habitat selection in birds: a review. Ann Zool Fenn 2:53–75

    Google Scholar 

  • Ising H, Braun C (2000) Acute and chronic endocrine effects of noise: review of the research conducted at the institute for water, soil and air hygiene. Noise Health 2:7–24

    PubMed  Google Scholar 

  • Isling H, Kruppa B (2004) Health effects caused by noise: evidence in the literature from the past 25 years. Noise Health 6:5–13

    Google Scholar 

  • Iyengar S, Bottjer SW (2002) The role of auditory experience in the formation of neural circuits underlying vocal learning in zebra finches. J Neurosci 22:946–958

    CAS  PubMed  Google Scholar 

  • Kaiser K et al (2015) Effects of anthropogenic noise on endocrine and reproductive function in White’s treefrog, Litoria caerulea. Conserv Physiol. doi:10.1093/conphys/cou061

    Google Scholar 

  • Kight CR, Swaddle JP (2011) How and why environmental noise impacts animals: an integrative, mechanistic review. Ecol Lett 14:1052–1061. doi:10.1111/j.1461-0248.2011.01664.x

    Article  PubMed  Google Scholar 

  • Kujala T, Brattico E (2009) Detrimental noise effects on brain’s speech functions. Biol Psychol 81:135–143. doi:10.1016/j.biopsycho.2009.03.010

    Article  PubMed  Google Scholar 

  • Lombard E (1911) Le signe de le elevation de la voix. Ann Malad l’Oreille, Larynx, Nez, Pharynx 37:101–119

    Google Scholar 

  • Lowry H, Lill A, Wong BBM (2011) Tolerance of auditory disturbance by an avian urban adapter, the noisy miner. Ethology 117:490–497. doi:10.1111/j.1439-0310.2011.01902.x

    Article  Google Scholar 

  • Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10:434–445

    Article  CAS  PubMed  Google Scholar 

  • Luther D, Baptista L (2010) Urban noise and the cultural evolution of bird songs. Proc R Soc B Biol Sci 277:469–473. doi:10.1098/rspb.2009.1571

    Article  Google Scholar 

  • Luther DA, Derryberry EP (2012) Birdsongs keep pace with city life: changes in song over time in an urban songbird affects communication. Anim Behav 83:1059–1066

    Article  Google Scholar 

  • Martin LB, Andreassi E, Watson W, Coon C (2011) Stress and animal health: physiological mechanisms and ecological consequences. Nat Educ Knowl 3:11

    Google Scholar 

  • McCarthy A et al (2013) Differences between the songs of rural and urban Australian magpies (Gymnorhina tibicen) and the potential consequences for territorial interactions. Notornis 60:143–150

    Google Scholar 

  • McClure CJ, Ware HE, Carlisle J, Kaltenecker G, Barber JR (2013) An experimental investigation into the effects of traffic noise on distributions of birds: avoiding the phantom road. Proc R Soc Lond B 280:20132290

    Article  Google Scholar 

  • McGiffin A, Lill A, Beckman J, Johnstone CP (2013) Tolerance of human approaches by Common Mynas along an urban–rural gradient. Emu 113:154–160. doi:10.1071/MU12107

    Article  Google Scholar 

  • Meillère A, Brischoux F, Angelier F (2015) Impact of chronic noise exposure on antipredator behavior: an experiment in breeding house sparrows. Behav Ecol 26:569–577. doi:10.1093/beheco/aru232

    Article  Google Scholar 

  • Møller AP et al (2015) Urban habitats and feeders both contribute to flight initiation distance reduction in birds. Behav Ecol 26:861–865. doi:10.1093/beheco/arv024

    Article  Google Scholar 

  • Montague MJ, Danek-Gontard M, Kunc HP (2013) Phenotypic plasticity affects the response of a sexually selected trait to anthropogenic noise. Behav Ecol 24:343–348. doi:10.1093/beheco/ars169

    Article  Google Scholar 

  • Morley EL, Jones G, Radford AN (2014) The importance of invertebrates when considering the impacts of anthropogenic noise. Proc R Soc B 281:20132683

    Article  PubMed  PubMed Central  Google Scholar 

  • Morton ES (1975) Ecological sources of selection on avian sounds. Am Nat 109:17

    Article  Google Scholar 

  • Naguib M, Kv Oers, Braakhuis A, Griffioen M, Goede Pd, Waas JR (2013) Noise annoys: effects of noise on breeding great tits depend on personality but not on noise characteristics. Anim Behav. doi:10.1016/j.anbehav.2013.02.015

    Google Scholar 

  • Naqvi F, Haider S, Perveen T, Haleem DJ (2012) Sub-chronic exposure to noise affects locomotor activity and produces anxiogenic and depressive like behavior in rats. Pharmacol Rep 64:64–69. doi:10.1016/S1734-1140(12)70731-4

    Article  PubMed  Google Scholar 

  • Narins P (2013) Behavioral responses of anuran amphibians to biotic, synthetic and anthropogenic noise. Proc Meet Acoust 19:010029. doi:10.1121/1.4799419

    Article  Google Scholar 

  • Nicholls JA, Goldizen AW (2006) Habitat type and density influence vocal signal design in satin bowerbirds. J Anim Ecol 75:549–558. doi:10.1111/j.1365-2656.2006.01075.x

    Article  PubMed  Google Scholar 

  • Nolfi S, Miglino O, Parisi D (1994) Phenotypic plasticity in evolving neural networks. In: From perception to action conference, proceedings, 7–9 Sept 1994. pp 146–157. doi:10.1109/FPA.1994.636092

  • Nowicki S, Peters S, Podos J (1998) Song learning, early nutrition and sexual selection in songbirds. Am Zool 38:179–190

    Article  Google Scholar 

  • Owens JL, Stec CL, O’Hatnick A (2012) The effects of extended exposure to traffic noise on parid social and risk-taking behavior. Behav Process 91:61–69. doi:10.1016/j.beproc.2012.05.010

    Article  Google Scholar 

  • Parris KM, McCarthy MA (2013) Predicting the effect of urban noise on the active space of avian vocal signals. Am Nat 182:452–464. doi:10.1086/671906

    Article  PubMed  Google Scholar 

  • Peris SJ, Pescador M (2004) Effects of traffic noise on paserine populations in Mediterranean wooded pastures. Appl Acoust 65:357–366

    Article  Google Scholar 

  • Potvin DA, MacDougall-Shackleton SA (2015a) Experimental chronic noise exposure affects adult song in zebra finches. Anim Behav 107:201–207. doi:10.1016/j.anbehav.2015.06.021

    Article  Google Scholar 

  • Potvin DA, MacDougall-Shackleton SA (2015b) Traffic noise affects embryo mortality and nestling growth rates in captive zebra finches. J Exp Zool A 323:722–730. doi:10.1002/jez.1965

    Article  Google Scholar 

  • Potvin DA, Mulder RA (2013) Immediate, independent adjustment of call pitch and amplitude in response to varying background noise by silvereyes (Zosterops lateralis). Behav Ecol 24:1363–1368. doi:10.1093/beheco/art075

    Article  Google Scholar 

  • Potvin DA, Parris KM (2013) Song convergence in multiple urban populations of silvereyes (Zosterops lateralis). Ecol Evol 2:1977–1984. doi:10.1002/ece3.320

    Article  Google Scholar 

  • Potvin DA, Mulder RA, Parris KM (2014) Silvereyes decrease acoustic frequency but increase efficacy of alarm calls in urban noise. Anim Behav 98:27–33. doi:10.1016/j.anbehav.2014.09.026

    Article  Google Scholar 

  • Proppe DS, Sturdy CB, St. Clair CC (2013) Anthropogenic noise decreases urban songbird diversity and may contribute to homogenization. Glob Change Biol 19:1075–1084

    Article  Google Scholar 

  • Rabat A, Bouyer JJ, Aran JM, Le Moal M, Mayo W (2005) Chronic exposure to an environmental noise permanently disturbs sleep in rats: inter-individual vulnerability. Brain Res 1059:72–82. doi:10.1016/j.brainres.2005.08.015

    Article  CAS  PubMed  Google Scholar 

  • Rabin LA, McCowan B, Hooper SL, Owings DH (2003) Anthropogenic noise and its effect on animal communication: an interface between comparative psychology and conservation biology. Int J Comp Psychol 16:21

    Google Scholar 

  • Ravindran R, Devi RS, Samson J, Senthilvelan M (2005) Noise-stress-induced brain neurotransmitter changes and the effect of Ocimum sanctum (Linn) treatment in albino rats. J Pharmacol Sci 98:354–360. doi:10.1254/jphs.FP0050127

    Article  CAS  PubMed  Google Scholar 

  • Rolland RM et al (2012) Evidence that ship noise increases stress in right whales. Proc R Soc Lond B 279:2363–2368

    Article  Google Scholar 

  • Schroeder J, Nakagawa S, Cleasby IR, Burke T (2012) Passerine birds breeding under chronic noise experience reduced fitness. PLoS ONE 7:e39200. doi:10.1371/journal.pone.0039200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siemers BM, Schaub A (2011) Hunting at the highway: traffic noise reduces foraging efficiency in acoustic predators. Proc R Soc Lond B 278:1646–1652. doi:10.1098/rspb.2010.2262

    Article  Google Scholar 

  • Slabbekoorn H, Halfwerk W (2009) Behavioural ecology: noise annoys at community level. Curr Biol 19:R693–R695. doi:10.1016/j.cub.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  • Slabbekoorn H, Ripmeester EA (2008) Birdsong and anthropogenic noise: implications and applications for conservation. Mol Ecol 17:72–83. doi:10.1111/j.1365-294X.2007.03487.x

    Article  PubMed  Google Scholar 

  • Sol D, Lapiedra O, González-Lagos C (2013) Behavioural adjustments for a life in the city. Anim Behav. doi:10.1016/j.anbehav.2013.01.023

    Google Scholar 

  • Spencer KA, MacDougall-Shackleton SA (2011) Singing to impress: the importance of developmental stress. Behav Ecol 22:14–15. doi:10.1093/beheco/arq116

    Article  Google Scholar 

  • Spiga I, Fox J, Benson R (2012) Effects of short-and long-term exposure to boat noise on cortisol levels in juvenile fish. In: Popper AN, Hawkins A (eds) The effects of noise on aquatic life, vol 730. Advances in experimental medicine and biology. Springer, New York, pp 251–253. doi:10.1007/978-1-4419-7311-5_55

  • Sun JWC, Narins PM (2005) Anthropogenic sounds differentially affect amphibian call rate. Biol Conserv 121:419–427

    Article  Google Scholar 

  • Tennessen JB, Parks SE, Langkilde T (2014) Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs. Conserv Physiol. doi:10.1093/conphys/cou032

    PubMed  PubMed Central  Google Scholar 

  • Tyack P, Janik V (2013) Effects of noise on acoustic signal production in marine mammals. In: Brumm H (ed) Animal communication and noise, vol 2. Animal signals and communication. Springer, Berlin, pp 251–271. doi:10.1007/978-3-642-41494-7_9

  • Valcarcel A, Fernandez-Juricic E (2009) Antipredator strategies of house finches: are urban habitats safe spots from predators even when humans are around? Behav Ecol Sociobiol 63:673–685. doi:10.1007/s00265-008-0701-6

    Article  Google Scholar 

  • Vargas-Salinas F, Cunnington GM, Amézquita A, Fahrig L (2014) Does traffic noise alter calling time in frogs and toads? A case study of anurans in Eastern Ontario, Canada. Urban Ecosyst 17:945–953

    Article  Google Scholar 

  • Ware HE, McClure CJW, Carlisle JD, Barber JR (2015) A phantom road experiment reveals traffic noise is an invisible source of habitat degradation. Proc Nat Acad Sci 112:12105–12109. doi:10.1073/pnas.1504710112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren PS, Katti M, Ermann M, Brazel A (2006) Urban bioacoustics: it’s not just noise. Anim Behav 71:491–502

    Article  Google Scholar 

  • Wignall AE, Jackson RR, Wilcox RS, Taylor PW (2011) Exploitation of environmental noise by an araneophagic assassin bug. Anim Behav 82:1037–1042

    Article  Google Scholar 

  • Wright AJ et al (2007) Anthropogenic noise as a stressor in animals: a multidisciplinary perspective. Int J Comp Psychol 20:250–273

    Google Scholar 

  • Yang X-J, Slabbekoorn H (2014) Timing vocal behavior: lack of temporal overlap avoidance to fluctuating noise levels in singing Eurasian wrens. Behav Process 108:131–137. doi:10.1016/j.beproc.2014.10.002

    Article  Google Scholar 

  • Zevin JD, Seidenberg MS, Bottjer SW (2004) Limits on reacquisition of song in adult zebra finches exposed to white noise. J Neurosci 24:5849–5862. doi:10.1523/jneurosci.1891-04.2004

    Article  CAS  PubMed  Google Scholar 

  • Zollinger SA, Brumm H (2011) The Lombard effect. Curr Biol 21:R614–R615

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Author thanks Scott MacDougall-Shackleton and an anonymous reviewer for providing comments on the manuscript and the editors of Animal Cognition for inviting this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique A. Potvin.

Additional information

This article is part of the Special Issue Animal cognition in a human-dominated world.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potvin, D.A. Coping with a changing soundscape: avoidance, adjustments and adaptations. Anim Cogn 20, 9–18 (2017). https://doi.org/10.1007/s10071-016-0999-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-016-0999-9

Keywords

Navigation