Skip to main content
Log in

Investigation of common Indian edible salts suitable for kidney disease by laser induced breakdown spectroscopy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Salt is an essential and important dietary mineral for maintaining life. Currently, the issue of the potential benefit or damage from salt intake in chronic kidney disease patients is controversial. The attempt of this article is to bring into focus the potential role of elements particularly sodium, Na, and potassium, K, which are the main constituents of dietary salts, in kidney patients by using laser-induced breakdown spectroscopy (LIBS). LIBS spectra of different salt samples have been recorded in the spectral region 200–500 nm with spectral resolution 0.1 nm and in the spectral region 200–900 nm with spectral resolution 0.75 nm. Quantitative elemental study was carried out to determine the constituents of different types of common Indian edible salts by using the calibration-free LIBS method. Our experimental results demonstrate that Saindha salt (commonly known as rock salt) is more beneficial than other edible salts for patients suffering from chronic kidney disease. The results of the quantitative elemental analysis of the salts obtained from LIBS measurements are also compared to atomic absorption spectroscopy (AAS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Ford CE, Shulman NB, Stamler J (1996) Blood pressure and end-stage renal disease in men. N Engl J Med 334:13–18. doi:10.1056/NEJM199601043340103

    Article  CAS  PubMed  Google Scholar 

  2. Coresh J, Wei GL, McQuillan G, Brancati FL, Levey AS, Jones C, Klag MJ (2001) Prevalence of high blood pressure and elevated serum creatinine level in the United States: findings from the third National Health and Nutrition Examination Survey (1988–1994). Arch Intern Med 161:1207–1216. doi:10.1001/archinte.161.9.1207

    Article  CAS  PubMed  Google Scholar 

  3. Muntzel M, Drueke T (1992) A comprehensive review of the salt and blood pressure relationship. Am J Hypertens 5:1S–42S

    CAS  PubMed  Google Scholar 

  4. Messerli FH, Schmieder RE, Weir MR (1997) Salt: a perpetrator of hypertensive target organ disease? Arch Intern Med 157:2449–2452. doi:10.1001/archinte.157.21.2449

    Article  CAS  PubMed  Google Scholar 

  5. Weir MR, Dworkin LD (1998) Antihypertensive drugs, dietary salt, and renal protection: how low should you go and with which therapy? Am J Kidney Dis 32:1–22. doi:10.1053/ajkd.1998.v32.pm9669419

    Article  CAS  PubMed  Google Scholar 

  6. Vito MC, Mark SR, Daniel L, Yahya S, Robert MF, Shaul GM (1982) Abnormal relationship between sodium intake and sympathetic nervous system activity in salt-sensitive patients with essential hypertension. Kidney Int 21:371–378. doi:10.1038/ki.1982.32

    Article  Google Scholar 

  7. Geleijnse JM, Kok FJ, Grobbee DE (2003) Blood pressure response to changes in sodium and potassium intake: a metaregression analysis of randomised trials. J Hum Hypertens 17:471–480. doi:10.1038/sj.jhh.1001575

    Article  CAS  PubMed  Google Scholar 

  8. Kimura G, Brenner BM (1993) A method for distinguishing salt sensitive from non-salt-sensitive forms of human and experimental hypertension. Curr Opin Nephrol Hypertens 2:341–349

    Article  CAS  PubMed  Google Scholar 

  9. Weinberger MH, Miller JZ, Luft FC, Grim CE, Fineberg NS (1993) Definitions and characteristics of sodium sensitivity and blood pressure resistance. Curr Opin Nephrol Hypertens 2:341–349. doi:10.1097/00041552-199311000-00013

    Google Scholar 

  10. The article can be found at http://www.answers.com/topic/salt

  11. Miziolek AW, Palleschi V, Schechter I (2006) Laser induced breakdown spectroscopy: fundamentals and applications. Cambridge University Press, Cambridge

    Google Scholar 

  12. Singh JP, Thakur SN (2007) Laser-induced breakdown spectroscopy. Elsevier Science, Amsterdam

    Google Scholar 

  13. Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V, Solvetti A, Tognoni E (2002) A procedure for correcting self-absorption in calibration-free laser-induced breakdown spectroscopy. Spectrochim Acta B 57:339–353. doi:10.1016/S0584-8547(01)00398-6

    Article  Google Scholar 

  14. Corsi M, Cristoforetti G, Hidalgo M, Legnaioli S, Palleschi V, Salvetti A, Tognoni E, Vallebona C (2003) Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis. Appl Opt 42:6133–6137. doi:10.1364/AO.42.006133

    Article  CAS  PubMed  Google Scholar 

  15. Ciucci A, Corsi M, Palleschi V, Rastelli V, Salvetti A, Tognoni E (1999) A new procedure for quantitative elemental analyses by laser-induced plasma spectroscopy. Appl Spectrosc 53:960–964. doi:10.1366/0003702991947612

    Article  CAS  Google Scholar 

  16. Corsi M, Palleschi V, Salvetti A, Tognoni E (2000) Making LIBS quantitative: a critical review of the current approaches to the problem. Res Adv Appl Spectrosc 1:41–47

    Google Scholar 

  17. Corsi M, Cristoforetti G, Palleschi V, Salvetti A, Tognoni E (2001) A fast and accurate method for the determination of precious alloys caratage by laser-induced plasma spectroscopy. Eur Phys J D 13:373–377. doi:10.1007/s100530170255

    Article  CAS  Google Scholar 

  18. Tognoni E, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Mueller M, Panne U, Gornushkin I (2007) A numerical study of expected accuracy and precision in calibration-free laser-Induced breakdown spectroscopy in the assumption of ideal analytical plasma. Spectrochimica Acta Part B 62:1287–1302. doi:10.1016/j.sab.2007.10.005

    Article  CAS  Google Scholar 

  19. Singh VK, Rai V, Rai AK (2009) Variational study of the constituents of cholesterol stones by laser-induced breakdown spectroscopy. Lasers Med Sci 24:27–33. doi:10.1007/s10103-007-0516-0

    Google Scholar 

  20. Rai AK, Yueh FY, Singh JP, Rai DK (2007) Laser-induced breakdown spectroscopy for solid and molten materials. In: Singh JP, Thakur SN (eds) Laser-induced breakdown spectroscopy. Elsevier, Amsterdam, pp 255–84

    Chapter  Google Scholar 

  21. Pandhija S, Rai AK (2009) Screening of brick-kiln area soil for determination of heavy metal Pb using LIBS. J Environ Monitor Assess 148:437–447. doi 10.1007/s10661-008-0173-1

    Google Scholar 

  22. Pandhija S, Rai AK (2008) Laser-induced breakdown spectroscopy: a versatile tool for monitoring of traces in materials. Pramana-Journal Phys 70:553–563. doi:10.1007/s12043-008-0070-8

    Article  CAS  Google Scholar 

  23. Rai NK, Rai AK (2008) LIBS-an efficient approach for the determination of Cr in industrial wastewater. J Hazard Mater 150:835–838. doi:10.1016/j.jhazmat.2007.10.044

    Article  CAS  PubMed  Google Scholar 

  24. The article can be found at http://www.daburpharma.com/htmls/prod_formu.html

  25. Corsi M, Palleschi V, Salvetti A, Tognoni E (2002) Calibration-free laser-induced plasma spectroscopy: a new method for combustion products analysis. Clean Air 3:69–79. doi:10.1080/15614410211845

    Article  Google Scholar 

  26. NIST National Institute of Standards and Technology USA, electronic database, http://physics.nist.gov/PhysRefData/ASD/lines_form.html

  27. Barthélemy O, Margot J, Laville S, Vidol F, Chaker M, Drogoff BL, Johnston TW, Sabsabi M (2005) Investigation of the state of local thermodynamic equilibrium of a laser-produced aluminum plasma. Appl Spectrosc 59:529–536

    Article  PubMed  Google Scholar 

  28. Griem HR (1964) Plasma spectroscopy. McGraw-Hill, New York

    Google Scholar 

  29. Wester PO (1987) Magnesium. Am J Clin Nutr 45:1305–1312

    CAS  PubMed  Google Scholar 

  30. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A (2000) Magnesium: an update on physiological, clinical, and analytical aspects. Clin Chim Acta 294:1–26. doi:10.1016/S0009-8981(99)00258-2

    Article  CAS  PubMed  Google Scholar 

  31. Xing JH, Soffer EE (2001) Adverse effects of laxatives. Dis Colon Rectum 44:1201–1209. doi:10.1007/BF02234645

    Article  CAS  PubMed  Google Scholar 

  32. The article can be found at http://renux.dmed.ed.ac.uk/EdREN/EdRenINFObits/Diet_CRF.html.

  33. Institute of Medicine Food and Nutrition Board (1999) Dietary reference intakes: calcium, phosphorus, magnesium, vitamin D and fluoride. National Academy Press. Washington, DC, 1999

Download references

Acknowledgments

The financial assistance from the DRDO project (No. ERIP/ER/04303481/M/01/787) is gratefully acknowledged. The authors also thank Mr. Pradeep Ranjan (Sr. Manager R&D, IFFCO Phulpur Unit, Allahabad, India) for providing us the facility of AAS. We are also much grateful to Prof. S.N. Thakur, B.H.U., Varanasi, India for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, V.K., Rai, N.K., Pandhija, S. et al. Investigation of common Indian edible salts suitable for kidney disease by laser induced breakdown spectroscopy. Lasers Med Sci 24, 917–924 (2009). https://doi.org/10.1007/s10103-009-0659-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-009-0659-2

Keywords

Navigation