Skip to main content

Advertisement

Log in

Ecosystem service provision, management systems and climate change in Valsaín forest, central Spain

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

This study addresses the impact of climate change and management approach on the provision of four ecosystem services (ES) (timber production, protection against gravitational hazards, carbon sequestration and biodiversity) in Valsaín forest in central Spain. The hybrid forest patch model PICUS v1.6 was used to simulate the development of 24 representative stand types over 100 years (2010–2110) in a full factorial simulation experiment combining three management regimes [“business as usual” management (BAU) and two alternatives to BAU (AM1 and AM2)], a no-management scenario (NOM) and six climate scenarios (historic climate represented by the period 1961–1990 and five transient climate change scenarios). Simulations indicated relatively small differences as regards the impact of the different management alternatives (BAU, AM1 and AM2) on the provision of ES as well as a clear improvement in biodiversity, protection and carbon storage under the no-management regime (NOM). Although timber production indicators were the most sensitive to climate change scenarios, biodiversity-related indicators responded fastest to the management regimes applied. Indicators of protection against rockfall and landslides were affected by both management and climate change. The results indicate substantial vulnerability of ES provisioning under the more extreme climate change scenarios at low elevations (1250 m). At higher elevations, the productivity of Scots pine stands may show a moderate decrease or increase, depending on the climate change scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger RA, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. doi:10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Bernaards CA, Jennrich RI (2005) Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis. Educ Psychol Meas 65: 676–696. doi:10.1177/0013164404272507 http://www.stat.ucla.edu/research/gpa

  • Brockerhoff EG, Jactel H, Parrotta JA, Ferraz SFB (2013) Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For Ecol Manag 301:43–50. doi:10.1016/j.foreco.2012.09.018

    Article  Google Scholar 

  • Bugmann H, Cordonnier Th, Truhetz H, Lexer MJ (2016) Impacts of business-as-usual management on ecosystem services in European mountain ranges under climate change: introduction. Reg Environ Change (this volume)

  • Carrer M, Urbinati C (2004) Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85(3):730–740. doi:10.1890/02-0478

    Article  Google Scholar 

  • Deal RL, White R (2012) Integrating forest products with ecosystem services: a global perspective introduction. For Policy Econ 17:1–2. doi:10.1016/j.forpol.2012.02.014

    Article  Google Scholar 

  • Deal RL, Hennon P, O’Hanlon R, D’Amore D (2014) Lessons from native spruce forests in Alaska: managing Sitka spruce plantations worldwide to benefit biodiversity and ecosystem services. Forestry 87:193–208. doi:10.1093/forestry/cpt055

    Article  Google Scholar 

  • Didion M, Kupferschmid AD, Lexer MJ, Rammer W, Seidl R, Bugmann H (2009) Potentials and limitations of using large-scale forest inventory data for evaluating forest succession models. Ecol Model 220(2):133–147. doi:10.1016/j.ecolmodel.2008.09.021

    Article  Google Scholar 

  • Dillon W, Goldstein M (1984) Multivariate analysis: methods and applications. Wiley, New York

    Google Scholar 

  • Duncker PS, Raulund-Rasmussen K, Gundersen P, Katzensteiner K, De Jong J, Ravn HP, Smith M, Eckmüllner O, Spiecker H (2012) How forest management affects ecosystem services, including timber production and economic return: synergies and trade-offs. Ecol Soc 17(4):50. doi:10.5751/ES-05066-170450

    Google Scholar 

  • Fürst C, Frank S, Witt A, Koschke L, Makeschin F (2013) Assessment of the effects of forest land use strategies on the provision of ecosystem services at regional scale. J Environ Manag 127:S96–S116. doi:10.1016/j.jenvman.2012.09.020

    Article  Google Scholar 

  • Galiano L, Martinez-Vilalta J, Lloret F (2010) Drought-induced multifactor decline of scots pine in the pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosystems 13:978–991. doi:10.1007/s10021-010-9368-8

    Article  CAS  Google Scholar 

  • Gamborg C, Larsen JB (2003) ‘Back to nature’—a sustainable future for forestry? For Ecol Manag 179:559–571. doi:10.1016/S0378-1127(02)00553-4

    Article  Google Scholar 

  • Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, Moen J, Bengtsson J (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Comm 4:1340. doi:10.1038/ncomms2328

    Article  Google Scholar 

  • Gea-Izquierdo G, Viguera B, Cabrera M, Cañellas I (2014) Drought induced decline could portend widespread pine mortality at the xeric ecotone in managed mediterranean pine-oak woodlands. For Ecol Manag 320:70–82. doi:10.1016/j.foreco.2014.02.025

    Article  Google Scholar 

  • Hewitt CD, Griggs DJ (2004) Ensembles-based predictions of climate changes and their impacts (ENSEMBLES). Eos Trans. 85(52):566. doi:10.1029/2004EO520005

    Article  Google Scholar 

  • Huber MO, Eastaugh CS, Gschwantner T, Hasenauer H, Kindermann G, Ledermann T, Lexer MJ, Rammer W, Schörghuber S, Sterba H (2013) Comparing simulations of three conceptually different forest models with National Forest Inventory data. Environ Model Softw 40:88–97. doi:10.1016/j.envsoft.2012.08.003

    Article  Google Scholar 

  • Hunter M (2001) Maintaining biodiversity in forest ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Jucker T, Bouriaud O, Avacaritei D, Dănilă I, Duduman G, Valladares F, Coomes DA (2014) Competition for light and water play contrasting roles in driving diversity–productivity relationships in Iberian forests. J Ecol 102:1202–1213. doi:10.1111/1365-2745.12276

    Article  Google Scholar 

  • Landsberg JJ, Gower ST (1997) Applications of physiological ecology to forest management, Physiological Ecology Series. Academic Press, London. ISBN 0-12-435955-8

    Google Scholar 

  • Landsberg JJ, Waring RH (1997) A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manag 95:209–228. doi:10.1016/S0378-1127(97)00026-1

    Article  Google Scholar 

  • Lexer MJ, Hönninger K (2001) A modified 3D-patch model for spatially explicit simulation of vegetation composition in heterogeneous landscapes. For Ecol Manag 144(1–3):43–65. doi:10.1016/S0378-1127(00)00386-8

    Article  Google Scholar 

  • Lindenmayer DB, Margules CR, Botkin DB (2000) Indicators of biodiversity for ecologically sustainable forest management. Conserv Biol 14(4):941–950. doi:10.1046/j.1523-1739.2000.98533.x

    Article  Google Scholar 

  • Lindner M, Calama R (2013) Climate change and the need for adaptation in Mediterranean forests. In: Lucas-Borja NE (ed) Forest Management of Mediterranean forests under the new context of climate change. Building alternatives for the coming future. Nova Science Pub, New York, pp 13–30

    Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709. doi:10.1016/j.foreco.2009.09.023

    Article  Google Scholar 

  • Mäkelä A, del Río M, Hynynen J, Hawkins MJ, Reyer C, Soares P, van Oijen M, Tomé M (2012) Using stand-scale forest models for estimating indicators of sustainable forest management. For Ecol Manag 285:164–178. doi:10.1016/j.foreco.2012.07.041

    Article  Google Scholar 

  • Mariñas G (2014) Análisis de las opiniones de los stakeholders sobre la gestión forestal en sistemas forestales de montaña. El caso del Sistema Central, Proyecto Fin de Carrera

    Google Scholar 

  • Maroschek M, Rammer W, Lexer J (2014) Using a novel assessment framework to evaluate protective functions and timber production in Austrian mountain forests under climate change. Reg Environ Change. doi:10.1007/s10113-014-0691-z

    Google Scholar 

  • Mason B, Mencuccini M (2014) Managing forests for ecosystem services—can spruce forests show the way? Forestry 87(2):189–191. doi:10.1093/forestry/cpu002

    Article  Google Scholar 

  • McElhinny C (2002) Forest and woodland structure as an index of biodiversity: a Review. Department of Forestry, Australian National University, Canberra

    Google Scholar 

  • Millenium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being: current state and trends. Island Press, Washington

    Google Scholar 

  • Montero G (1994) Generalities on silviculture of Pinus sylvestris L. in Spain. Investigación Agraria. Sistemas y Recursos Forestales, Fuera de serie 3:251–257

    Google Scholar 

  • Ojea E, Martín-Ortega J, Chiabai A (2012) Defining and classifying ecosystem services for economic valuation: the case of forest water services. Environ Sci Policy 19–20:1–15. doi:10.1016/j.envsci.2012.02.002

    Article  Google Scholar 

  • Palahí M, Mavsar R, Gracia C, Birot Y (2008) Mediterranean forests under focus. Int For Rev 10(4):676–689. doi:10.1505/ifor.10.4.676

    Google Scholar 

  • Pardos C, Calama R, Maroschek M, Rammer W, Lexer MJ (2015) A model-based analysis of climate change vulnerability of Pinus pinea stands under multi-objective management in the Northern Plateau of Spain. Ann For Sci. doi:10.1007/s13595-015-0520-7

    Google Scholar 

  • Poetzelsberger E, Wolfslehner B, Hasenauer H (2015) Climate change impacts on key forest functions of the Vienna Woods. Eur J For Res 134(3):481–496. doi:10.1007/s10342-015-0866-2

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Ray D, Bathgate S, Moseley D, Taylor P, Nicoll B, Pizzirani S, Gardiner B (2014) Comparing the provision of ecosystem services in plantation forests under alternative climate change adaptation management options in Wales. Reg Environ Change. doi:10.1007/s10113-014-0644-6

    Google Scholar 

  • Revelle W (2014) Procedures for personality and psychological research. Northwestern University, Evanston. http://CRAN.R-project.org/package=psych

  • Sabaté S, Gracia CA, Sánchez A (2002) Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. For Ecol Manag 162:23–37. doi:10.1016/S0378-1127(02)00048-8

    Article  Google Scholar 

  • Sánchez-de-Dios R, Benito-Garzón M, Sainz-Ollero H (2009) Present and future extension of the Iberian submediterranean territories as determined from the distribution of marcescent oaks. Pl Ecol 204(2):189–205. doi:10.1007/s11258-009-9584-5

    Article  Google Scholar 

  • Sánchez-Palomares O, López-Senespleda E, Roig-Gómez S, Vázquez de la Cueva A, Gandullo-Gutiérrez JM (2012) Las estaciones ecológicas actuales y potenciales de los rebollares españoles. Monografías INIA: Serie Forestal 17:343

    Google Scholar 

  • Seidl R, Lexer MJ, Jäger D, Hönninger K (2005) Evaluating the accuracy and generality of a hybrid patch model. Tree Physiol 25:939–951. doi:10.1139/x10-235

    Article  Google Scholar 

  • Seidl R, Rammer W, Lexer MJ (2011a) Climate change vulnerability of sustainable forest management in the eastern Alps. Clim Change 106(2):225–254. doi:10.1007/s10584-010-9899-1

    Article  Google Scholar 

  • Seidl R, Rammer W, Lexer MJ (2011b) Adaptation options to reduce climate change vulnerability of sustainable forest management in the Austrian Alps. Can J For Res 41(4):694–706. doi:10.1139/x10-235

    Article  Google Scholar 

  • Serrada R, Montero G, Reque JA (eds) (2008) Compendio de Selvicultura en España. INIA-Fundación Conde del Valle de Salazar, 1178 p

  • Spathelf P, van der Maaten E, van der Maaten-Theunissen M, Campioli M, Dobrowolska D (2014) Climate change impacts in European forests: the expert views of local observers. Ann For Sci 71(2):131–137. doi:10.1007/s13595-013-0280-1

    Article  Google Scholar 

  • Steenberg JWN, Duinker PN, Bush PG (2011) Exploring adaptation to climate change in the forests of central Nova Scotia, Canada. For Ecol Manag 262:2316–2327. doi:10.1016/j.foreco.2011.08.027

    Article  Google Scholar 

  • Thornton PE, Running SW (1999) An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric For Meteor 93(4):211–228. doi:10.1016/S0168-1923(98)00126-9

    Article  Google Scholar 

  • Turner MG, Donato DC, Romme WH (2013) Consequences of spatial heterogeneity for ecosystem services in changing forest landscape: priorities for future research. Landscape Ecol 28:1081–1097. doi:10.1007/s10980-012-9741-4

    Article  Google Scholar 

  • Van den Meerschaut D, Vandekerkhove K (1998) Development of a stand-scale forest biodiversity index based on the state forest inventory. In: Hansen M, Burk T (eds) Integrated tools for natural resources inventories in the 21st century. USDA, Boise, pp 340–349

    Google Scholar 

  • Vieira J, Campelo F, Nabais C (2008) Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster in Mediterranean climate. Trees 23(2):257–265. doi:10.1007/s00468-008-0273-0

    Article  Google Scholar 

  • Wang S, Fu B (2013) Trade-offs between forest ecosystem services. For Policy Econom 26:145–146. doi:10.1016/j.forpol.2012.07.014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by the EU FP7 project ARANGE- 289437. We are especially grateful to Javier Donés, Director of Valsaín forests and to Miguel Cabrera for facilitating the access to data. We are grateful to three anonymous reviewers who provided thoughtful comments on earlier versions of the manuscript. English was revised by Adam Collins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Pérez.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardos, M., Pérez, S., Calama, R. et al. Ecosystem service provision, management systems and climate change in Valsaín forest, central Spain. Reg Environ Change 17, 17–32 (2017). https://doi.org/10.1007/s10113-016-0985-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-016-0985-4

Keywords

Navigation