Skip to main content

Advertisement

Log in

Water temperature increases in the river Rhine in response to climate change

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

The present study analyzes climate change effects on the water temperature of the Rhine, one of the largest rivers in Central Europe. Simulation calculations were performed based on a range of climate and river flow projections for the near (2021–2050) and for the far future (2071–2100) compared to a reference period (1961–1990). Changes in mean annual water temperature in the near future range between +0.6 and +1.4 °C and between +1.9 and +2.2 °C in the far future (average of nine stations). Monthly mean values of the far future change in a more differentiated way by +0.4 to +1.3 °C in spring and +2.7 to +3.4 °C in late summer. The length of periods of high water temperature, expressed as successive days with water temperatures over 27 °C, increases by a factor of four until 2100. These prolonged durations of periods with unusually high water temperatures may provoke changes in the food web and in the rates of biological processes in the Rhine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arhonditsis GB, Brett MT (2004) Evaluation of the current state of mechanistic aquatic biogeochemical modeling. Mar Ecol Prog Ser 271:13–26. doi:10.3354/meps271013

    Article  Google Scholar 

  • Basu BK, Pick FR (1996) Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnol Oceanogr 41:1572–1577

    Article  CAS  Google Scholar 

  • Bergström S (1995) The HBV model. In: Singh VP (ed) Computer models of watershed hydrology, Chapter 13. Water Resources Publications, Highlands Ranch, Colorado, USA, pp 443–476

    Google Scholar 

  • Bronstert A, Kolokotronis V, Schwandt D, Straub H (2007) Comparison and evaluation of regional climate scenarios for hydrological impact analysis: general scheme and application example. Int J Climatol 27:1579–1594. doi:10.1002/joc.1621

    Article  Google Scholar 

  • BUND (2009) Studie: Abwärmelast Rhein. http://www.rhein.bund-rlp.de

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, New York

  • Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555–558. doi:10.1126/science.279.5350.555

    Article  CAS  Google Scholar 

  • Eberle M, Buitefeld H, Wilke K, Krahe P (2005) Hydrological modelling in the River Rhine Basin, Part III-Daily HBV Model for the Rhine Basin, BfG-Reports, BfG-1451. Federal Institute of Hydrology, Koblenz

    Google Scholar 

  • Elliott JM (1994) Quantitative ecology and the brown trout. Oxford University Press, Oxford

    Google Scholar 

  • EU 2006: Directive 2006/44/EC of the European Parliament and of the Council of 6 September 2006 on the quality of fresh waters needing protection or improvement in order to support fish life (codified version). Off J Eur Union L 264/20. http://rod.eionet.europa.eu/instruments/626

  • Friedrich G, Pohlmann M (2009) Long-term plankton studies at the lower Rhine/Germany. Limnologica 39:14–39. doi:10.1016/j.limno.2008.03.006

    Article  CAS  Google Scholar 

  • Hardenbicker P, Rolinski S, Weitere M, Fischer H (2014) Contrasting shifts and long-term trends in phytoplankton dynamics in two large rivers. Int Rev Hydrobiol 99:287–299. doi:10.1002/iroh.201301680

    Article  Google Scholar 

  • Hardenbicker P, Weitere M, Ritz S, Schöll F, Fischer H (2015) Longitudinal plankton dynamics in the rivers Rhine and Elbe. River Res Appl (early view). doi:10.1002/rra.2977

    Google Scholar 

  • Hattermann FF, Huang S, Koch H (2015) Climate change impacts on hydrology and water resources. Met Z 24:201–211. doi:10.1127/metz/2014/0575

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res 113:D20119. doi:10.1029/2008JD10201

    Article  Google Scholar 

  • Hilton J, O’Hare M, Bowes MJ, Jones JI (2006) How green is my river? A new paradigm of eutrophication in rivers. Sci Total Environ 365:66–83. doi:10.1016/j.scitotenv.2006.02.055

    Article  CAS  Google Scholar 

  • Hollweg H-D, Böhm U, Fast I, Hennemuth B, Keuler K, Keup-Thiel E, Lautenschlager M, Legutke S, Radtke K, Rockel B, Schubert M, Will A, Woldt M, Wunram C (2008) Ensemble simulations over Europe with the regional climate model CLM forced with IPCC AR4 global scenarios. Technical report No. 3, Models & Data, Max-Planck Institute for Meteorology, Hamburg, pp 150, ISSN 1619-2257

  • Huang S, Hattermann FF, Krysanova V, Bronstert A (2012) Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model. Clim Change 116:631–663. doi:10.1007/s10584-012-0586-2

    Article  Google Scholar 

  • ICPR (2006) Vergleich der Wärmeeinleitungen 1989 und 2004 entlang des Rheins. International Commission for the Protection of the Rhine, ICPR-Report No. 151

  • ICPR (2011) Study of scenarios for the discharge regime of the Rhine. International Commission for the Protection of the Rhine, ICPR-Report No. 188. http://www.iksr.org/uploads/media/188_e.pdf

  • ICPR (2013a) Development of Rhine water temperatures based on validated temperature measurements between 1978 and 2011. International Commission for the Protection of the Rhine, ICPR-Report No. 209. http://www.iksr.org/uploads/media/209_e.pdf

  • ICPR (2013b) Present state of knowledge on possible consequences of changes of the discharge pattern and water temperature on the Rhine ecosystem and possible perspectives for action. International Commission for the Protection of the Rhine, ICPR-Report No. 204. http://www.iksr.org/uploads/media/204ae.pdf

  • ICPR (2014) Estimation of the effects of climate change scenarios on future Rhine water temperature development. International Commission for the Protection of the Rhine, ICPR-Report No. 214, Appendix D. http://www.iksr.org/uploads/media/214_en_01.pdf

  • Imbery F, Plagemann S, Namyslo J (2013) Processing and analysing an ensemble of climate projections for the joint research project KLIWAS. Adv Sci Res 10:91–98. doi:10.5194/asr-10-91-2013

    Article  Google Scholar 

  • IPCC (2007) Summary for Policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Jacob D (2006) REMO climate of the 20th century run and A1B scenario run, UBA project, 0.088 degree resolution. World Data Center for Climate. CERA-Database

  • Jacob D, Nilson E, Tomassini L, Bülow K (2009) REMO climate of the 20th century run and A1B scenario run, BfG project, 0.088 degree resolution. World Data Center for Climate. CERA-Database

  • Kirchesch V, Schöl A (1999) The water quality model QSim: a tool for simulation and prediction of water quality and plankton dynamics in rivers. Hydrol Wasserbewirtsch 43:302–312

    CAS  Google Scholar 

  • Koch H, Vögele S, Hattermann FF, Huang S (2015) The impact of climate change and variability on the generation of electrical power. Met Z 24:173–188. doi:10.1127/metz/2015/0530

    Article  Google Scholar 

  • Langan SJ, Johnston L, Donaghy MJ, Youngson AF, Hay DW, Soulsby C (2001) Variation in river water temperatures in an upland stream over a 30-year period. Sci Total Environ 265:195–207. doi:10.1016/s0048-9697(00)00659-8

    Article  CAS  Google Scholar 

  • LAWA-AO 2007: Rahmenkonzeption Monitoring. Teil B Bewertungsgrundlagen und Methodenbeschreibungen. Arbeitspapier II Hintergrund- und Orientierungswerte für physikalisch-chemische Komponenten. – Länderarbeitsgemeinschaft Wasser. http://www.vsvisachsen.de/Beitr%E4ge%20aus%20unseren%20Veranst/17.09.2008%20Tausalz%20Recht%20RAKONArbeitspapierII_Stand_07_03_2007.pdf

  • Lenderink G, Buishand TA, Van Deursen W (2007) Estimates of future discharges of the River Rhine using two scenario methodologies: direct versus delta approach. Hydrol Earth Syst Sci 11:1145–1159

    Article  Google Scholar 

  • Loague K, Green RE (1991) Statistical and graphical methods for evaluating solute transport models: overview and application. J Contam Hydrol 7:51–73

    Article  CAS  Google Scholar 

  • Luo YZ, Ficklin DL, Liu XM, Zhang MH (2013) Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Sci Total Environ 450:72–82. doi:10.1016/j.scitotenv.2013.02.004

    Article  Google Scholar 

  • Middelkoop H, Daamen K, Gellens D, Grabs W, Kwadijk JCJ, Lang H, Parmet B, Schadler B, Schulla J, Wilke K (2001) Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Clim Change 49:105–128. doi:10.1023/a:1010784727448

    Article  CAS  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans Asae 50:885–900

    Article  Google Scholar 

  • Morrison J, Quick MC, Foreman MGG (2002) Climate change in the Fraser River watershed: flow and temperature projections. J Hydrol 263:230–244. doi:10.1016/s0022-1694(02)00065-3

    Article  Google Scholar 

  • Moser H, Cullmann J, Kofalk S, Mai S, Nilson E (2012) An integrated climate service for the transboundary river basin and coastal management of Germany. In: Climate exchange, World Meteorological Organization, Tudor Rose, Leicester, pp 88–93

  • Mouthon J, Daufresne M (2006) Effects of the 2003 heatwave and climatic warming on mollusc communities of the Saone: a large lowland river and of its two main tributaries (France). Glob Change Biol 12:441–449. doi:10.1111/j.1365-2486.2006.01095.x

    Article  Google Scholar 

  • Nakicenovic N, Davidson O, Davis G, Grübler A, Kram T, Lebre La Rovere E, Metz B, Morita T, Pepper W, Pitcher H, Sankovski A, Shukla P, Swart R, Watson R, Dadi Z (2000) IPCC Special report on emission scenarios. Summary for policymakers, pp 27

  • Nilson E, Carambia M, Krahe P (2010a) Low flow changes in the Rhine River basin. In: Görgen K, Beersma J, Bahmer G, Buiteveld H, Carambia M, de Keuter O, Krahe P, Nilson E, Lammersen R, Perrin C, Volken D (eds) Assessment of climate change impacts on discharge in the Rhine River Basin: Results of the RheinBlick2050 Project, CHR Report No. I-23, pp 115–119

  • Nilson E, Perrin C, Beersma J, Carambia M, Krahe P, de Keizer O, Görgen K (2010b) Evaluation of data and processing procedures. In: Görgen K, Beersma J, Bramer G, Buiveld H, Carambia M, de Keizer O, Krahe P, Nilson E, Lammersen R, Perrin C, Volken D (eds) Assessment of climate change impacts on discharge in the Rhine River Basin: Results of the RheinBlick2050 Project, CHR Report I-23, pp 51–95. http://www.chr-khr.org/en/publications?field_publication_code_start_value=c

  • Nilson E, Krahe P, Lingemann I, Horsten T, Klein B, Carambia M, Larina M (2014) Auswirkungen des Klimawandels auf das Abflussgeschehen und die Binnenschifffahrt in Deutschland. KLIWAS-43/2014. doi: 10.5675/Kliwas_43/2014_4.01

  • Oppermann R, Schumacher F, Kirchesch V (2015) HYDRAX: Ein hydrodynamisches 1-D Modell. BfG-Bericht. doi:10.5675/HYDRAX

    Google Scholar 

  • Orlowsky B, Seneviratne SI (2011) Investigating spatial climate relations using CARTs: an application to persistent hot days in a multimodel ensemble. J Geophys Res 116:D14106. doi:10.1029/2010jd015188

    Article  Google Scholar 

  • Plagemann S, Imbery F, Namyslo J (2014) Validierung und Bewertung von Klimaprojektionen: Bereitstellung von Klimaszenarien für den Binnenbereich. KLIWAS-29/2014. doi: 10.5675/Kliwas_29/2014_1.02

  • Poff N, Brinson MM, Day JW (2002) Potential impacts on inland freshwater and coastal wetland ecosystems in the United States. http://www.pewclimate.org/docUploads/aquatic.pdf

  • Sand-Jensen K, Pedersen NL (2005) Differences in temperature, organic carbon and oxygen consumption among lowland streams. Freshwater Biol 50:1927–1937. doi:10.1111/j.1365-2427.2005.01436.x

    Article  CAS  Google Scholar 

  • Sand-Jensen K, Pedersen NL, Søndergaard M (2007) Bacterial metabolism in small temperate streams under contemporary and future climates. Freshwater Biol 52:2340–2353. doi:10.1111/j.1365-2427.2007.01852.x

    Article  Google Scholar 

  • Schär C, Vidale PL, Luthi D, Frei C, Haberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336. doi:10.1038/nature02300

    Article  Google Scholar 

  • Schöl A, Kirchesch V, Bergfeld T, Müller D (1999) Model-based analysis of oxygen budget and biological processes in the regulated rivers Moselle and Saar: modelling the influence of benthic filter feeders on phytoplankton. Hydrobiologia 410:167–176. doi:10.1023/a:1003858713999

    Article  Google Scholar 

  • Schöll F (2013) Verbreitung der Körbchenmuschel Corbicula fluminea (O. F. Müller 1774) in Abhängigkeit von der Wassertemperatur in deutschen Bundeswasserstraßen. Lauterbornia 76:85–90, D-86424 Dinkelscherben

  • Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614. doi:10.1038/nature03089

    Article  CAS  Google Scholar 

  • Van der Linden P, Mitchell JFB (2009) ENSEMBLES: Climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Fitz Roy Road, Exeter EX1 3 PB, UK, pp 160. http://ensembles-eu.metoffice.com/

  • Van Vliet MTH, Franssen WHP, Yearsley JR, Ludwig F, Haddeland I, Lettenmaier DP, Kabat P (2013) Global river discharge and water temperature under climate change. Glob Environ Change-Hum Policy Dimens 23:450–464. doi:10.1016/j.gloenvcha.2012.11.002

    Article  Google Scholar 

  • Viergutz C, Kathol M, Norf H, Arndt H, Weitere M (2007) Control of microbial communities by the macrofauna: a sensitive interaction in the context of extreme summer temperatures? Oecologia 151:115–124. doi:10.1007/s00442-006-0544-7

    Article  Google Scholar 

  • Ward JV (1992) Aquatic insect ecology 1. Biology and habitat. Wiley, New York

    Google Scholar 

  • Webb BW, Hannah DM, Moore RD, Brown LE, Nobilis F (2008) Recent advances in stream and river temperature research. Hydrol Process 22:902–918. doi:10.1002/hyp.6994

    Article  Google Scholar 

  • Weitere M, Arndt H (2002) Top-down effects on pelagic heterotrophic nanoflagellates (HNF) in a large river (River Rhine): do losses to the benthos play a role? Freshwater Biol 47:1437–1450. doi:10.1046/j.1365-2427.2002.00875.x

    Article  Google Scholar 

  • Weitere M, Vohmann A, Schulz N, Linn C, Dietrich D, Arndt H (2009) Linking environmental warming to the fitness of the invasive clam Corbicula fluminea. Glob Change Biol 15:2838–2851. doi:10.1111/j.1365-2486.2009.01925.x

    Article  Google Scholar 

  • Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc B-Biol Sci 365:2093–2106. doi:10.1098/rstb.2010.0055

    Article  Google Scholar 

Download references

Acknowledgments

This study is part of the research program “Impacts of climate change on waterways and navigation” (KLIWAS) funded by the German Federal Ministry of Transport and Digital Infrastructure (BMVI). We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://eca.knmi.nl). We thank Dr. Florian Imbery and Sabrina Plagemann (German Weather Service—DWD) for providing the meteorological data within the KLIWAS Project 1.01 (Hydrometeorological reference data for river basins) and 1.02 (Provision of application-oriented and evaluated climate projection data). For preparing the hydrological input data, we want to thank Maria Carambia (BfG) from the KLIWAS Project 4.01 (Impacts of climate change on hydrology and management options for the economy and inland navigation). We thank Dr. Tanja Bergfeld-Wiedemann (BfG) for helping to improve the model. Current water level and discharge data were derived from the Federal Waterways and Shipping Administration (WSV, provided by the BfG). For support with the figures (Figs. 1, 2), we thank Beatrix Konz (BfG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulin Hardenbicker.

Additional information

Editor: Erika Coppola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardenbicker, P., Viergutz, C., Becker, A. et al. Water temperature increases in the river Rhine in response to climate change. Reg Environ Change 17, 299–308 (2017). https://doi.org/10.1007/s10113-016-1006-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-016-1006-3

Keywords

Navigation