Skip to main content
Log in

Effect of a Hybrid Zinc Stearate-Silver System on the Properties of Polylactide and Its Abiotic and the Biotic Degradation and Antimicrobial Activity Thereof

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

This work investigates the degradation and properties of a thermoplastically prepared composite comprising a polylactide/hybrid zinc stearate-silver system. The influence of the zinc stearate-silver system on the properties of the composite is investigated by electron microscopy, differential scanning calorimetry and tensile tests. Furthermore, the antimicrobial activities of the systems are examined. The degradation behaviour of the composites is studied in both abiotic and biotic (composting) environments at an elevated temperature of 58 °C. The results reveal good dispersion of the additive in the PLA matrix, a stabilizing effect exerted by the same on the polylactide matrix during processing, and slight reduction in glass transition temperature. The zinc stearate-silver component also reduces brittleness and extends elongation of the composite. Abiotic hydrolysis is not significantly affected, which is in contrast with pure PLA, although mineralization during the early stage of biodegradation increases noticeably. The composite exhibits antimicrobial activity, even at the lowest dosage of the zinc stearate/silver component (1 wt%). Moreover, Ag and Zn contents were found to be present in the composite during abiotic hydrolysis, which was demonstrated by minimal diffusion of Ag ions from the matrix and very extensive washing of compounds that contained Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Izundia, E.; Larranaga, A.; Vilas, J. L.; Leon, L. M. Threedimensional orientation of poly (L-lactide) crystals under uniaxial drawing. RSC Adv. 2016, 6(15), 11943–11951.

    Article  CAS  Google Scholar 

  2. Imre, B.; Pukánszky, B. Compatibilization in bio-based and biodegradable polymer blends. Eur. Polym. J. 2013, 49(6), 1215–1233.

    Article  CAS  Google Scholar 

  3. Jacobsen, S.; Fritz H. G. Plasticizing effect of different plasticizers on the mechanical properties of polylactide. Polym. Eng. Sci. 1999, 39(7), 1303–1310.

    Article  CAS  Google Scholar 

  4. Mekonnen, T.; Mussone, P.; Khalil, H.; Bressler, D. Progress in bio-based plastics and plasticizing modifications. J. Mater. Chem. A 2013, 1(43), 13379–13398.

    Article  CAS  Google Scholar 

  5. Martin, O.; Averous, L. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 2001, 42(14), 6209–6219.

    Article  CAS  Google Scholar 

  6. Maglio, G.; Malinconico, M.; Migliozzi, A.; Groeninckx, G. Immiscible poly(L-lactide)/poly(ε-caprolactone) blends: influence of the addition of a poly (L-lactide)-poly (oxyethylene) block copolymer on thermal behavior and morphology. Macromol. Chem. Phys. 2004, 205(7), 946–950.

    Article  CAS  Google Scholar 

  7. Maglio, G.; Migliozzi, A.; Palumbo, R. Thermal properties of di-and triblock copolymers of poly(L-lactide) with poly(oxyethylene) or poly(ε-caprolactone). Polymer 2003, 44(2), 369–375.

    Article  CAS  Google Scholar 

  8. Maglio, G.; Migliozzi, A.; Palumbo, R.; Immirzi, B.; Grazia Volpe, M. Compatibilized poly(e-caprolactone)/poly(L-lactide) blends for biomedical uses. Macromol. Rapid Commun. 1999, 20(4), 236–238.

    Article  CAS  Google Scholar 

  9. Galya, T.; Sedlarik, V.; Kuritka, I.; Sedlarikova, J.; Saha, P. Characterization of antibacterial polymeric films based on poly (vinyl alcohol) and zinc nitrate for biomedical applications. International Journal of Polymer Analysis and Characterization[online]. 2008, 13(4), 241–253.

    Article  CAS  Google Scholar 

  10. Iqbal, N.; Kadir, M. R. A.; Nik Malek, N. A. N.; Mahmood, N. H.; Murali, M. R.; Kamarul, T. Rapid microwave assisted synthesis and characterization of nanosized silver-doped hydroxyapatite with antibacterial properties. Mater. Lett. 2012, 89, 118–122.

    Article  CAS  Google Scholar 

  11. Bazant, P.; Munster, L.; Machovsky, M.; Sedlak, J.; Pastorek, M.; Kozakova, Z.; Kuritka, I. Wood flour modified by hierarchical Ag/ZnO as potential filler for wood-plastic composites with enhanced surface antibacterial performance. Ind. Crops Prod. 2014, 62, 179–187.

    Article  CAS  Google Scholar 

  12. Breitwieser, D.; Moghaddam, M. M.; Spirk, S.; Baghbanzadeh, M.; Pivec, T.; Fasl, H.; Ribitsch, V.; Kappe, C. O. In situ preparation of silver nanocomposites on cellulosic fibersmicrowave vs conventional heating. Carbohydr. Polym. 2013, 94(1), 677–686.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, X.; Xia, Y.; Li, Q.; Ma, X.; Quan, F.; Geng, C.; Han, Z. Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids Surf. A: Physicochem. Eng. As. 2014, 144, 180–188.

    Article  CAS  Google Scholar 

  14. Pantani, R.; Gorrasi, G.; Vigliotta, G.; Murariu, M.; Dubois, P. PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics. Eur. Polym. J. 2013, 49(11), 3471–3482.

    Article  CAS  Google Scholar 

  15. Kucharczyk, P.; Pavelková, A.; Stloukal, P.; Sedlarík, V. Degradation behaviour of PLA-based polyesterurethanes under abiotic and biotic environments. Polym. Degrad. Stab. 2016, 129(1), 222–230.

    Article  CAS  Google Scholar 

  16. Stloukal, P.; Kucharczyk, P. Acceleration of polylactide degradation under biotic and abiotic conditions through utilization of a new, experimental, highly compatible additive. Polym. Degrad. Stab. 2017, 142(1), 217–225.

    Article  CAS  Google Scholar 

  17. Lipik, V. T; Widjaja, L. K.; Liow, S. S.; Venkatraman, S. S. Effects of transesterification and degradation on properties and structure of polycaprolactone-polylactide copolymers. Polym. Degrad. Stab. 2010, 95, 2596–2602.

    Article  CAS  Google Scholar 

  18. Undri, A.; Rosi, L.; Frediani, M.; Frediani, P. Conversion of poly(lactic acid) to lactide via microwave assisted pyrolysis. J. Anal. Appl. Pyrolysis 2014, 110, 55–65.

    Article  CAS  Google Scholar 

  19. Salazar, R.; Domenek, S.; Plessis, C.; Ducruet, V. Quantitative determination of volatile organic compounds formed during polylactide processing by MHS-SPME. Polym. Degrad. Stab. 2017, 136, 80–88.

    Article  CAS  Google Scholar 

  20. Badia, J. D.; Santonja-Blasco, L.; Moriana, R.; Amparo, R. G. Thermal analysis applied to the characterization of degradation in soil of polylactide: II On the thermal stability and thermal decomposition kinetics. Polym. Degrad. Stab. 2010, 95(1), 2192–2199.

    Article  CAS  Google Scholar 

  21. Wang, M.; Xu, J.; Wu, H.; Guo, S. Effect of pentaerythritol and organic tin with calcium/zinc stearates on the stabilization of poly(vinyl chloride). Polym. Degrad. Stab. 2006, 91(9), 2101–2109.

    Article  CAS  Google Scholar 

  22. Rosa, D. S.; Grillo, D.; Bardi, M. A. G.; Calil, M. R.; Guedes, C. G. F.; Ramires, E. C.; Frollini, E. Mechanical, thermal and morphological characterization of polypropylene/biodegradable polyester blends with additives. Polym. Test. 2009, 28(8), 836–842.

    Article  CAS  Google Scholar 

  23. Farah, S.; Anderson, D. G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications-A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392.

    Article  CAS  PubMed  Google Scholar 

  24. Da Costa, H. M.; Abrantes T. A. S.; Nunes, R. C. R.; Visconte, L. L. Y.; Furtado, C. R. G. Design and analysis of experiments in silica filled natural rubber compounds-effect of castor oil. Polym. Test. 2003, 22(7), 769–777.

    Article  CAS  Google Scholar 

  25. Cam, D.; Marucci, M. Influence of residual monomers and metals on poly(L-lactide) thermal stability. Polymer 1997, 38(8), 1879–1884.

    Article  CAS  Google Scholar 

  26. White, R. P.; Lipson, J. E. G. Polymer free volume and its connection to the glass transition. Macromolecules 2016, 49(11), 3987–4007.

    Article  CAS  Google Scholar 

  27. Eili, M.; Shameli, K.; Ibrahim, N. A.; Wan Yunus, W. M. Z. Degradability enhancement of poly(lactic acid) by stearate-Zn3Al LDH nanolayers. Int. J. Mol. Sci. 2012, 13(12), 7938–7951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang, L. J.; Zhang, J.; Wolcott, M. P. Comparison of polylactide/nano-sized calcium carbonate and polylactide/ montmorillonite composites: Reinforcing effects and toughening mechanisms. Polymer 2007, 48(26), 7632–7644.

    Article  CAS  Google Scholar 

  29. Shankar, S.; Rhim, J. V. Tocopherol-mediated synthesis of silver nanoparticles and preparation of antimicrobial PBAT/silver nanoparticles composite films. LWT-Food Sci. Technol. 2016, 72, 149–156.

    Article  CAS  Google Scholar 

  30. Egger, S.; Lehman, R. P.; Height, M. J.; Loessner, M. J.; Schuppler, M. Antimicrobial properties of a novel silver-silica nanocomposite material. Appl. Environ. Microbiol. 2009, 75(9), 2973–2976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen, Y. CHEN, Z.; Hou, Z.; Li, T.; Lu, X. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front. Environ. Sci. En. 2015, 9(5), 912–918.

    Article  CAS  Google Scholar 

  32. Dhas, S. P.; Shiny, P. J.; Khan, S.; Mukherjee, A.; Chandrasekaran, N. Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms. J. Basis. Microbiol. 2014, 54(9), 916–927.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Czech Science Foundation (No. 17-16928Y) and by the Ministry of Education, Youth and Sports of the Czech Republic within the NPU I programme (No. LO1504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Kucharczyk.

Electronic supplementary material

10118_2018_2120_MOESM1_ESM.pdf

Effect of a Hybrid Zinc Stearate-Silver System on the Properties of Polylactide and Its Abiotic and the Biotic Degradation and Antimicrobial Activity Thereof

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jandíková, G., Stoplova, P., Di Martino, A. et al. Effect of a Hybrid Zinc Stearate-Silver System on the Properties of Polylactide and Its Abiotic and the Biotic Degradation and Antimicrobial Activity Thereof. Chin J Polym Sci 36, 925–933 (2018). https://doi.org/10.1007/s10118-018-2120-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2120-0

Keywords

Navigation