Skip to main content
Log in

Recent Progress in AIE-active Polymers

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The demand for highly efficient solid-state luminophores is continuously growing due to their potential applications in optoelectrical devices, chemosensors, and biological applications. The discovery of luminogens with aggregation-induced emission (AIE) by Tang et al. in 2001 provides a good reponse to this demand. Among the exploited AIE luminogens, AIE-active polymers possess many advantages such as simple synthesis, convenient structrue modifications, and good processability, which offer an extensive platform for scientists and engineers. Herein, the design principles and latest synthetic advancement of AIE-active polymers are summarized, including click polymerization and multicomponent polymerization. Non-conjugated heteroatom-rich polymers were in situ generated and demonstated non-conventional clusteroluminoscence. Advanced applications including fluorescent sensors, stimuli-responsive materials, biological applications, circularly polarized luminescence, and electroluminescence are then introduced in detail. AIE-active polymers display the signal-amplification effect for sensitive and selective response to chemo/bioanalytes or stimuli and enhanced photosensitization effect for cancer theranostics. Retrospecting the expansion of this field can further strengthen our belief that AIE-active polymers are promising for conceptual innovation and technological breakthroughs in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Aggregation–induced emission of 1–methyl–1,2,3,4,5–pentaphenylsilole. Chem. Commun. 2001, 1740–1741.

    Google Scholar 

  2. Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation–induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.

    Article  CAS  Google Scholar 

  3. Hu, R.; Kang, Y.; Tang, B. Z. Recent advances in AIE polymers. Pofym. J. 2016, 48, 359.

    CAS  Google Scholar 

  4. Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation–induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.

    CAS  Google Scholar 

  5. Qiu, Z.; Liu, X.; Lam, J. W.; Tang, B. Z. The marriage of aggregation–induced emission with polymer science. Macromol. Rapid Commun. 2018, 1800568.

    Google Scholar 

  6. Chen, J.; Xie, Z.; Lam, J. W.; Law, C. C.; Tang, B. Z. Silolecontaining polyacetylenes synthesis, thermal stability, light emission, nanodimensional aggregation, and restricted intramolecular rotation.. Macromolecules 2003, 36, 1108–1117.

    Article  CAS  Google Scholar 

  7. Hu, R.; Leung, N. L.; Tang, B. Z. AIE macromolecules: Syntheses, structures and functionalities. Chem. Soc. Rev. 2014, 43, 4494–4562.

    Article  CAS  Google Scholar 

  8. Yang, D. J.; Lin, L. Y.; Huang, P. C.; Gao, J. Y.; Hong, J. L. Tetraphenylthiophene–terminated poly(acrylic acid) as pH–and bio–sensors by the aggregation–induced emission property. React. Funct. Polym. 2016, 108, 47–53.

    Article  Google Scholar 

  9. Jiang, R.; Liu, M.; Huang, Q.; Huang, H.; Wan, Q.; Wen, Y.; Tian, J.; Cao, Q. Y.; Zhang, X.; Wei, Y. Fabrication of multifunctional fluorescent organic nanoparticles with AIE feature through photo–initiated RAFT polymerization. Polym. Chem. 2017, 8, 7390–7399.

    Article  CAS  Google Scholar 

  10. Wang, Z.; Yong, T. Y.; Wan, J.; Li, Z. H.; Zhao, H.; Zhao, Y.; Gan, L.; Yang, X. L.; Xu, H. B.; Zhang, C. Temperature–sensitive fluorescent organic nanoparticles with aggregation–induced emission for long–term cellular tracing. ACS Appl. Mater. Interfaces 2015, 7, 3420–3425.

    Article  CAS  Google Scholar 

  11. Guan, X.; Zhang, D.; Jia, T.; Zhang, Y.; Meng, L.; Jin, Q.; Ma, H.; Lu, D.; Lai, S.; Lei, Z. Intriguingly tuning the fluorescence of AIEgen using responsive polyelectrolyte microspheres. RSC Adv. 2016, 6, 107622–107627.

    Article  CAS  Google Scholar 

  12. Wan, Q.; Jiang, R.; Mao, L.; Xu, D.; Zeng, G.; Shi, Y.; Deng, F.; Liu, M.; Zhang, X.; Wei, Y. A powerful “one–pot” tool for fabrication of AIE–active luminescent organic nanoparticles through the combination of RAFT polymerization and multicomponent reactions. Mater. Chem. Front. 2017, 1, 1051–1058.

    Article  CAS  Google Scholar 

  13. Chen, T.; Yin, H.; Chen, Z. Q.; Zhang, G. F.; Xie, N. H.; Li, C.; Gong, W. L.; Tang, B. Z.; Zhu, M. Q. Monodisperse AIE–active conjugated polymer nanoparticles via dispersion polymerization using geminal cross–coupling of 1,1–dibromoolefins. Small 2016, 12, 6547–6552.

    Article  CAS  Google Scholar 

  14. Chen, M.; Li, L.; Wu, H.; Pan, L.; Li, S.; He, B.; Zhang, H.; Sun, J. Z.; Qin, A.; Tang, B. Z. Unveiling the different emission behavior of polytriazoles constructed from pyrazine–based AIE monomers by click polymerization. ACS Appl. Mater. Interfaces 2018, 10,12181–12188.

    Article  CAS  Google Scholar 

  15. He, B.; Su, H.; Bai, T.; Wu, Y.; Li, S.; Gao, M.; Hu, R.; Zhao, Z.; Qin, A.; Ling, J. Spontaneous amino–yne click polymerization: A powerful tool toward regio–and stereospecific poly(β–aminoacrylate)s. J. Am. Chem. Soc. 2017, 139, 5437–5443.

    Article  CAS  Google Scholar 

  16. Tian, T.; Hu, R.; Tang, B. Z. Room temperature one–step conversion from elemental sulfur to functional polythioureas through catalyst–free multicomponent polymerizations. J. Am. Chem. Soc. 2018, 140, 6156–6163.

    Article  CAS  Google Scholar 

  17. Liu, Y.; Roose, J.; Lam, J. W.; Tang, B. Z. Multicomponent polycoupling of internal diynes, aryl diiodides, and boronic acids to functional poly(tetraarylethene)s. Macromolecules 2015, 48, 8098–8107.

    Article  CAS  Google Scholar 

  18. Qiu, Z.; Han, T.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Polhttps yarylcyanation of diyne: A one–pot three–component convenient route for in situ generation of polymers with AIE characteristics. Macromolecules 2016, 49, 8888–8898.

    Article  CAS  Google Scholar 

  19. Zhao, E.; Lam, J. W.; Meng, L.; Hong, Y.; Deng, H.; Bai, G.; Huang, X.; Hao, J.; Tang, B. Z. Poly[(maleic anhydride)–alt–(vinyl acetate)]: A pure oxygenic nonconjugated macromolecule with strong light emission and solvatochromic effect. Macromolecules 2014, 48, 64–71.

    Article  Google Scholar 

  20. Wang, R. B.; Yuan, W. Z.; Zhu, X. Y. Aggregation–induced emission of non–conjugated poly(amido amine)s: Discovering, luminescent mechanism understanding and bioapplication. Chinese J. Polym. Sci. 2015, 33, 680–687.

    Article  CAS  Google Scholar 

  21. Han, T.; Deng, H.; Qiu, Z.; Zhao, Z.; Zhang, H.; Zou, H.; Leung, N. L.; Shan, G.; Elsegood, M. R.; Lam, J. W. Facile multicomponent polymerizations toward unconventional luminescent polymers with readily openable small heterocycles. J. Am. Chem. Soc. 2018, 140, 5588–5598.

    Article  CAS  Google Scholar 

  22. Sun, X. L.; Liu, D. M.; Tian, D.; Zhang, X. Y.; Wu, W.; Wan, W. M. The introduction of the Barbier reaction into polymer chemistry. Nat. Commun. 2017, 8, 1210.

    Article  Google Scholar 

  23. Chen, Y.; Han, H.; Tong, H.; Chen, T.; Wang, H.; Ji, J.; Jin, Q. Zwitterionic phosphorylcholine–TPE conjugate for pH–responsive drug delivery and AIE active imaging. ACS Appl. Mater. Interfaces 2016, 8, 21185–21192.

    Article  CAS  Google Scholar 

  24. Cao, Q. Y.; Jiang, R.; Liu, M.; Wan, Q.; Xu, D.; Tian, J.; Huang, H.; Wen, Y.; Zhang, X.; Wei, Y. Microwave–assisted multicomponent reactions for rapid synthesis of AIE–active fluorescent polymeric nanoparticles by post–polymerization method. Mater. Sci. Eng. C 2017, 80, 578–583.

    Article  CAS  Google Scholar 

  25. Wan, Q.; Liu, M.; Xu, D.; Huang, H.; Mao, L.; Zeng, G.; Deng, F.; Zhang, X.; Wei, Y. Facile fabrication of amphiphilic AIE active glucan via formation of dynamic bonds: Self assembly, stimuli responsiveness and biological imaging. J. Mater. Chem. B 2016, 4, 4033–4039.

    Article  CAS  Google Scholar 

  26. Wan, Q.; Liu, M.; Xu, D.; Mao, L.; Tian, J.; Huang, H.; Gao, P.; Deng, F.; Zhang, X.; Wei, Y. Fabrication of aggregation induced emission active luminescent chitosan nanoparticles via a “one–pot” multicomponent reaction. Carbohydr. Polym. 2016, 152, 189–195.

    Article  CAS  Google Scholar 

  27. Huang, Z. F.; Zhang, X. Q.; Zhang, X. Y.; Yang, B.; Wang, K.; Wang, S. Q.; Yuan, J. Y.; Tao, L.; Wei, Y. Synthesis of starchbased amphiphilic fluorescent nanoparticles and their application in biological imaging. J. Nanosci. Nanotechnol. 2018, 18, 2345–2351.

    Article  CAS  Google Scholar 

  28. Wan, Q.; Jiang, R.; Guo, L.; Yu, S.; Liu, M.; Tian, J.; Liu, G.; Deng, F.; Zhang, X.; Wei, Y. Novel strategy toward AIE–active fluorescent polymeric nanoparticles from polysaccharides: Preparation and cell imaging. ACS Sustain. Chem. Eng. 2017, 5, 9955–9964.

    Article  CAS  Google Scholar 

  29. Peng, H. Q.; Zheng, X.; Han, T.; Kwok, R. T.; Lam, J. W.; Huang, X.; Tang, B. Z. Dramatic differences in aggregation–induced emission and supramolecular polymerizability of tetraphenylethene–based stereoisomers. J. Am. Chem. Soc. 2017, 139, 10150–10156.

    Google Scholar 

  30. Bai, W.; Wang, Z.; Tong, J.; Mei, J.; Qin, A.; Sun, J. Z.; Tang, B. Z. A self–assembly induced emission system constructed by the host–guest interaction of AIE–active building blocks. Chem. Commun. 2015, 51, 1089–1091.

    Article  CAS  Google Scholar 

  31. Tao, D. D.; Wang, Q.; Yan, X. S.; Chen, N.; Li, Z.; Jiang, Y. B. Ag+ coordination polymers of a chiral thiol ligand bearing an AIE fluorophore. Chem. Commun. 2017, 53,255–258.

    Google Scholar 

  32. Zhang, J.; Zhu, J.; Lu, C.; Gu, Z.; He, T.; Yang, A.; Qiu, H.; Zhang, M.; Yin, S. A hyperbranched fluorescent supramolecular polymer with aggregation induced emission (AIE) properties. Polym. Chem. 2016, 7, 4317–4321.

    Article  CAS  Google Scholar 

  33. Thomas, S. W.; Joly, G. D.; Swager, T. M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 2007, 107, 1339–1386.

    Article  CAS  Google Scholar 

  34. Wu, Y. W.; Qin, A. J.; Tang, B. Z. AIE–active polymers for explosive detection. Chinese J. Polym. Sci. 2017, 3 5,141–154.

    Google Scholar 

  35. Dong, W.; Wu, H.; Chen, M.; Shi, Y.; Sun, J.; Qin, A.; Tang, B. Z. Anionic conjugated polytriazole: direct preparation, aggregation–enhanced emission, and highly efficient Al3+ sensing. Polym. Chem. 2016, 7, 5835–5839.

    Article  CAS  Google Scholar 

  36. Wan, H.; Gu, P.; Zhou, F.; Wang, H.; Jiang, J.; Chen, D.; Xu, Q.; Lu, J. M. Polyacrylic esters with “one–is–enough” effect and investigation of their AIEE behaviours and cyanide detection in aqueous solution. Polym. Chem. 2018, 9, 3893–3899.

    Article  CAS  Google Scholar 

  37. Qian, Y.; Liu, H.; Tan, H.; Yang, Q.; Zhang, S.; Han, L.; Yi, X.; Huo, L.; Zhao, H.; Wu, Y. A novel water–soluble fluorescence probe with wash–free cellular imaging capacity based on AIE characteristics. Macromol. Rapid Commun. 2017, 38, 1600684.

    Article  Google Scholar 

  38. Wei, G.; Jiang, Y.; Wang, F. A novel AIEE polymer sensor for detection of Hg2+ and Ag+ in aqueous solution. J. Photochem. Photobiol. A 2018, 358, 38–43.

    Article  CAS  Google Scholar 

  39. Morishima, K.; Ishiwari, F.; Matsumura, S.; Fukushima, T.; Shibayama, M. Mesoscopic structural aspects of Ca2+–triggered polymer chain folding of a tetraphenylethene–appended poly(acrylic acid) in relation to its aggregation–induced emission behavior. Macromolecules 2017, 50, 5940–5945.

    Article  CAS  Google Scholar 

  40. Yang, D.; Li, F.; Luo, Z.; Bao, B.; Hu, Y.; Weng, L.; Cheng, Y.; Wang, L. Conjugated polymer nanoparticles with aggregation induced emission characteristics for intracellular Fe3+ sensing. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 1686–1693.

    Article  CAS  Google Scholar 

  41. Guan, X.; Meng, L.; Jin, Q.; Lu, B.; Chen, Y.; Li, Z.; Wang, L.; Lai, S.; Lei, Z. A new thermo–, pH–and C?2–responsive fluorescent four–arm star polymer with aggregation–induced emission for long–term cellular tracing. Macromol. Mater. Eng. 2018, 1700553.

    Google Scholar 

  42. Wang, K.; Lu, H.; Liu, B.; Yang, J. Multi–stimuli–responsive fluorescence of AEE polyurethane films. Eur. Polym. J. 2018, 101,225–232.

    Google Scholar 

  43. Minei, P.; Pucci, A. Fluorescent vapochromism in synthetic polymers. Polym. Int. 2016, 5, 609–620.

    Google Scholar 

  44. Zhao, Y.; Zhu, W.; Ren, L.; Zhang, K. Aggregation–induced emission polymer nanoparticles with pH–responsive fluorescence. Polym. Chem. 2016, 7, 5386–5395.

    Article  CAS  Google Scholar 

  45. Zhang, Z.; Bilalis, P.; Zhang, H.; Gnanou, Y.; Hadjichristidis, N. Core cross–linked multiarm star polymers with aggregationinduced emission and temperature responsive fluorescence characteristics. Macromolecules 2017, 50,4217–4226.

    Google Scholar 

  46. Wang, L.; Yang, L.; Li, L.; Cao, D. The synthesis and highly sensitive detection of water content in THF using a novel solvatochromic AIE polymer containing diketopyrrolopyrrole and triphenylamine. New J. Chem. 2016, 40, 6706–6713.

    Article  CAS  Google Scholar 

  47. Liu, F.; Urban, M. W. Recent advances and challenges in designing stimuli–responsive polymers. Prog. Polym. Sci. 2010, 35, 3–23.

    Article  CAS  Google Scholar 

  48. Chen, J. R.; Zhao, J.; Xu, B. J.; Yang, Z. Y.; Liu, S. W.; Xu, J. R.; Zhang, Y.; Wu, Y. C.; Lv, P. Y.; Chi, Z. G. An AEE–active polymer containing tetraphenylethene and 9,10–distyrylanthracene moieties with remarkable mechanochromism. Chinese J. Polym. Sci. 2017, 35, 282–292.

    Article  CAS  Google Scholar 

  49. Li, T.; He, S.; Qu, J.; Wu, H.; Wu, S.; Zhao, Z.; Qin, A.; Hu, R.; Tang, B. Z. Thermoresponsive AIE polymers with finetuned response temperature. J. Mater. Chem. C 2016, 4, 2964–2970.

    Article  CAS  Google Scholar 

  50. Singh, R.; Wu, H. Y.; Dwivedi, A. K.; Singh, A.; Lin, C. M.; Raghunath, P.; Lin, M. C.; Wu, T. K.; Wei, K. H.; Lin, H. C. Monomeric and aggregation emissions of tetraphenylethene in a photo–switchable polymer controlled by cyclization of diarylethene and solvent conditions. J. Mater. Chem. C 2017, 5, 9952–9962.

    Article  CAS  Google Scholar 

  51. Zhan, R.; Pan, Y.; Manghnani, P. N.; Liu, B. AIE polymers: Synthesis, properties, and biological applications. Macromol. Biosci. 2017, 17, 1600433.

    Article  Google Scholar 

  52. Yan, L.; Zhang, Y.; Xu, B.; Tian, W. Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale 2016, 8, 2471–2487.

    Article  CAS  Google Scholar 

  53. Gao, M.; Tang, B. Z. Aggregation–induced emission probes for cancer theranostics. Drug Discovery Today 2017, 22, 1288–1294.

    Article  CAS  Google Scholar 

  54. Yuan, Y.; Liu, B. Visualization of drug delivery processes using AIEgens. Chem. Sci. 2017, 8, 2537–2546.

    Article  CAS  Google Scholar 

  55. Liang, J.; Liu, B. ROS–responsive drug delivery systems. Bioeng. Transl. Med. 2016, 1, 239–251.

    Article  CAS  Google Scholar 

  56. Wu, W. High–performance conjugated polymer photosensitizers. Chem 2018, 4, 1762–1764.

    Article  CAS  Google Scholar 

  57. Liu, S.; Zhang, H.; Li, Y.; Liu, J.; Du, L.; Chen, M.; Kwok, R.; Lam, J.; Phillips, D. L.; Tang, B. Z. Strategies to enhance the photosensitization: Polymerization and D/A even–odd effect. Angew. Chem. 2018, 130, 15409–15413.

    Article  Google Scholar 

  58. Roose, J.; Tang, B. Z.; Wong, K. S. Circularly–polarized luminescence (CPL) from chiral AIE molecules and macrostructures. Small 2016, 12, 6495–6512.

    Article  CAS  Google Scholar 

  59. Liu, Q.; Xia, Q.; Wang, S.; Li, B. S.; Tang, B. Z. In situ visualizable self–assembly, aggregation–induced emission and circularly polarized luminescence of tetraphenylethene and alaninebased chiral polytriazole. J. Mater. Chem. C 2018, 6, 4807–4816.

    Article  CAS  Google Scholar 

  60. Kim, Y.; Kim, E.; Clavier, G.; Audebert, P. New tetrazinebased fluoroelectrochromic window; modulation of the fluorescence through applied potential. Chem. Commun. 2006, 34, 3612–3614.

    Article  Google Scholar 

  61. Cheng, S. W.; Han, T.; Huang, T. Y.; Tang, B. Z.; Liou, G. S. High–performance electrofluorochromic devices based on aromatic polyamides with AIE–active tetraphenylethene and electro–active triphenylamine moieties. Polym. Chem. 2018, 9, 4364–4373.

    Article  CAS  Google Scholar 

  62. Yang, L.; Zhang, Y.; Zhang, X.; Li, N.; Quan, Y.; Cheng, Y. Doping–free circularly polarized electroluminescence of AIEactive chiral binaphthyl–based polymers. Chem. Commun. 2018, 54, 9663–9666.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21788102, 21490570, and 21490574), the Research Grant Council of Hong Kong (Nos. 16308116, 16303815, C2014-15G, C6009-17G, and AHKUST605/ 16), the Science and Technology Plan of Shenzhen (Nos. JCYJ20160229205601482, JCY20170307173739739, and JCYJ20170818113602462), and the Innovation and Technology Commission (Nos. ITC-CNERC149C01 and ITS/254/17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jacky W. Y. Lam or Ben Zhong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y.B., Lam, J.W.Y. & Tang, B.Z. Recent Progress in AIE-active Polymers. Chin J Polym Sci 37, 289–301 (2019). https://doi.org/10.1007/s10118-019-2221-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2221-4

Keywords

Navigation