Skip to main content
Log in

Poly(methyl methacrylate)-induced Microstructure and Hydrolysis Behavior Changes of Poly(L-lactic acid)/Carbon Nanotubes Composites

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Poly(L-lactic acid) (PLLA)-based composites exhibit wide applications in many fields. However, most of hydrophilic fillers usually accelerate the hydrolytic degradation of PLLA, which is unfavorable for the prolonging of the service life of the articles. In this work, a small quantity of poly(methyl methacrylate) (PMMA) (2 wt%–10 wt%) was incorporated into the PLLA/carbon nanotubes (CNTs) composites. The effects of PMMA content on the dispersion of CNTs as well as the microstructure and hydrolytic degradation behaviors of the composites were systematically investigated. The results showed that PMMA promoted the dispersion of CNTs in the composites. Amorphous PLLA was obtained in all the composites. Largely enhanced hydrolytic degradation resistance was achieved by incorporating PMMA, especially at relatively high PMMA content. Incorporating 10 wt% PMMA led to a dramatic decrease in the hydrolytic degradation rate from 0.19 %/h of the PLLA/CNT composite sample to 0.059 %/h of the PLLA/PMMA-10/CNT composite sample. The microstructure evolution of the composites was also detected, and the results showed that no crystallization occurred in the PLLA matrix. Further results based on the interfacial tension calculation showed that the enhanced hydrolytic degradation resistance of the PLLA matrix was mainly attributed to the relatively strong interfacial affinity between PMMA and CNTs, which prevented the occurrence of hydrolytic degradation at the interface between PLLA and CNTs. This work provides an alternative method for tailoring the hydrolytic degradation ability of the PLLA-based composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jia, L.; Zhang, W. C.; Tong, B.; Yang, R. J. Crystallization, mechanical and flame-retardant properties of poly(lactic acid) composites with DOPO and DOPO-POSS. Chinese J. Polym. Sci.2018, 36, 871–879.

    Article  CAS  Google Scholar 

  2. Karamanlioglu, M.; Preziosi, R.; Robson, G. D. Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): A review. Polym. Degrad. Stab.2017, 137, 122–130.

    Article  CAS  Google Scholar 

  3. Girdthep, S.; Sankong, W.; Pongmalee, A.; Saelee, T.; Punyodom, W.; Meepowpan, P.; Worajittiphon, P. Enhanced crystallization, thermal properties, and hydrolysis resistance of poly(L-lactic acid) and its stereocomplex by incorporation of graphene nanoplatelets. Polym. Test.2017, 61, 229–239.

    Article  CAS  Google Scholar 

  4. Holcapkova, P.; Stloukal, P.; Kucharczyk, P.; Omastova, M.; Kovalcik, A. Anti-hydrolysis effect of aromatic carbodiimide in poly(lactic acid) wood flour composites. Composites Part A2017, 103, 283–291.

    Article  CAS  Google Scholar 

  5. Stloukal, P.; Jandikova, G.; Koutny, M.; Sedlařík, V. Carbodiimide additive to control hydrolytic stability and biodegradability of PLA. Polym. Test.2016, 54, 19–28.

    Article  CAS  Google Scholar 

  6. Jandíková, G.; Stoplova, P.; Di Martino, A.; Stloukal, P.; Kucharczyk, P.; Machovsky, M.; Sedlarik, V. Effect of a hybrid zinc stearatesilver system on the properties of polylactide and its abiotic and the biotic degradation and antimicrobial activity thereof. Chinese J. Polym. Sci.2018, 36, 925–933.

    Article  CAS  Google Scholar 

  7. Tsuji, H.; Nakahara, K. Poly(L-lactide). IX. Hydrolysis in acid media. J. Appl. Polym. Sci.2002, 86, 186–194.

    Article  CAS  Google Scholar 

  8. Tsuji, H.; Ikada, Y. Properties and morphology of poly(L-lactide). II. Hydrolysis in alkaline solution. J. Polym. Sci., Part A: Polym. Chem.1998, 36, 59–66.

    Article  CAS  Google Scholar 

  9. Tsuji, H.; Ikarashi, K. In vitro hydrolysis of poly(L-lactide) crystalline residues as extended-chain crystallites. Polym. Degrad. Stab.2004, 85, 647–656.

    CAS  Google Scholar 

  10. Xu, L.; Crawford, K.; Gorman, C. B. Effects of temperature and pH on the degradation of poly(lactic acid) brushes. Macromolecules2011, 44, 4777–4782.

    Article  CAS  Google Scholar 

  11. Chen, H. M.; Feng, C. X.; Zhang, W. B.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y. Hydrolytic degradation behavior of poly(L-lactide)/carbon nanotubes nanocomposites. Polym. Degrad. Stab.2013, 98, 198–208.

    Article  CAS  Google Scholar 

  12. Chen, H. M.; Wang, Y. P.; Chen, J.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Hydrolytic degradation behavior of poly(L-lactide)/SiO2 composites. Polym. Degrad. Stab.2013, 98, 2672–2679.

    Article  CAS  Google Scholar 

  13. Chen, H. M.; Shen, Y.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Zhou, Z. W. Molecular ordering and α′-form formation of poly(L-lactide) during the hydrolytic degradation. Polymer2013, 54, 6644–6653.

    Article  CAS  Google Scholar 

  14. Iniguez-Franco, F.; Auras, R.; Burgess, G.; Holmes, D.; Fang, X.; Rubino, M.; Soto-Valdez, H. Concurrent solvent induced crystallization and hydrolytic degradation of PLA by waterethanol solutions. Polymer2016, 99, 315–323.

    Article  CAS  Google Scholar 

  15. Wang, Y. P.; Xiao, Y. J.; Duan, J.; Yang, J. H.; Wang, Y.; Zhang, C. L. Accelerated hydrolytic degradation of poly(lactic acid) achieved by adding poly(butylene succinate). Polym. Bull.2015, 73, 1067–1083.

    Article  CAS  Google Scholar 

  16. Oyama, H. T.; Tanishima, D.; Ogawa, R. Biologically safe poly(L-lactic acid) blends with tunable degradation rate: Microstructure, degradation mechanism, and mechanical properties. Biomacromolecules2017, 18, 1281–1292.

    Article  CAS  PubMed  Google Scholar 

  17. Huang, Y.; Chen, F.; Pan, Y.; Chen, C.; Jiang, L.; Dan, Y. Effect of hydrophobic fluoropolymer and crystallinity on the hydrolytic degradation of poly(lactic acid). Eur. Polym. J.2017, 97, 308–318.

    Article  CAS  Google Scholar 

  18. Ma, P. M.; Xu, P. W.; Zhai, Y. H.; Dong, W. F.; Zhang, Y.; Chen, M. Q. Biobased poly(lactide)/ethylene-co-vinyl acetate thermoplastic vulcanizates: Morphology evolution, superior properties, and partial degradability. ACS Sustain. Chem. Eng.2015, 3, 2211–2219.

    Article  CAS  Google Scholar 

  19. Andersson, S. R.; Hakkarainen, M.; Inkinen, S.; Sodergard, A.; Albertsson, A. C. Customizing the hydrolytic degradation rate of stereocomplex PLA through different PDLA architectures. Biomacromolecules2012, 13, 1212–1222.

    Article  PubMed  CAS  Google Scholar 

  20. Arias, V.; Hoglund, A.; Odelius, K.; Albertsson, A. C. Tuning the degradation profiles of poly(L-lactide)-based materials through miscibility. Biomacromolecules2014, 15, 391–402.

    Article  CAS  PubMed  Google Scholar 

  21. Jašo, V.; Glenn, G.; Klamczynski, A.; Petrović, Z. S. Biodegradability study of polylactic acid/thermoplastic polyurethane blends. Polym. Test.2015, 47, 1–3.

    Article  CAS  Google Scholar 

  22. Wang, Y. P.; Wei, X.; Duan, J.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Greatly enhanced hydrolytic degradation ability of poly(L-lactide) achieved by adding poly(ethylene glycol). Chinese J. Polym. Sci.2017, 35, 386–399.

    Article  CAS  Google Scholar 

  23. Chen, H.; Chen, J.; Chen, J.; Yang, J.; Huang, T.; Zhang, N.; Wang, Y. Effect of organic montmorillonite on cold crystallization and hydrolytic degradation of poly(L-lactide). Polym. Degrad. Stab.2012, 97, 2273–2283.

    Article  CAS  Google Scholar 

  24. Elsawy, M. A.; Kim, K. H.; Park, J. W.; Deep, A. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew. Sust. Energ. Rev.2017, 79, 1346–1352.

    Article  CAS  Google Scholar 

  25. Reddy, N.; Nama, D.; Yang, Y. Poly(lactic acid)/polypropylene polyblend fibers for better resistance to degradation. Polym. Degrad. Stab.2018, 93, 233–241.

    Article  CAS  Google Scholar 

  26. Yan, S.; Yin, J.; Yang, Y.; Dai, Z.; Ma, J.; Chen, X. Surface-grafted silica linked with L-lactic acid oligomer: A novel nanofiller to improve the performance of biodegradable poly(L-lactide). Polymer2007, 48, 1688–1694.

    Article  CAS  Google Scholar 

  27. Luo, Y. B.; Wang, X. L.; Wang, Y. Z. Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA. Polym. Degrad. Stab.2012, 97, 721–728.

    Article  CAS  Google Scholar 

  28. Duan, J.; Xie, Y. N.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Zhang, J. H. Graphene oxide induced hydrolytic degradation behavior changes of poly(L-lactide) in different mediums. Polym. Test.2016, 56, 220–228.

    Article  CAS  Google Scholar 

  29. Shirahase, T.; Komatsu, Y.; Tominaga, Y.; Asai, S.; Sumita, M. Miscibility and hydrolytic degradation in alkaline solution of poly(L-lactide) and poly(methyl methacrylate) blends. Polymer2006, 47, 4839–4844.

    Article  CAS  Google Scholar 

  30. Hao, X.; Kaschta, J.; Pan, Y.; Liu, X.; Schubert, D. W. Intermolecular cooperativity and entanglement network in a miscible PLA/PMMA blend in the presence of nanosilica. Polymer2016, 82, 57–65.

    Article  CAS  Google Scholar 

  31. Boudaoud, N.; Benali, S.; Mincheva, R.; Satha, H.; Raquez, J. M.; Dubois, P. Hydrolytic degradation of poly(L-lactic acid)/poly(methyl methacrylate) blends. Polym. Int.2018, 67, 1393–1400.

    Article  CAS  Google Scholar 

  32. Fischer, E. W.; Sterzel, H. J.; Wegner, G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid Polym. Sci.1973, 251, 980–990.

    CAS  Google Scholar 

  33. Liu, L.; Wang, Y.; Xiang, F. M.; Li, Y. L.; Han, L.; Zhou, Z. W. Effects of functionalized multiwalled carbon nanotubes on the morphologies and mechanical properties of PP/EVA blend. J. Polym. Sci., Part B: Polym. Phys.2009, 47, 1481–1491.

    Article  CAS  Google Scholar 

  34. Li, Y. L.; Wang, Y.; Liu, L.; Han, L.; Xiang, F. M.; Zhou, Z. W. Crystallization improvement of poly(L-lactide) induced by functionalized multiwalled carbon nanotubes. J. Polym. Sci., Part B: Polym. Phys.2009, 47, 326–339.

    Article  CAS  Google Scholar 

  35. Pantani, R.; Sorrentino, A. Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym. Degrad. Stab.2013, 98, 1089–1096.

    Article  CAS  Google Scholar 

  36. Kulinski, Z.; Piorkowska, E. Crystallization, structure and properties of plasticized poly(L-lactide). Polymer2005, 46, 10290–10300.

    Article  CAS  Google Scholar 

  37. Rodriguez, E.; Shahbikian, S.; Marcos, B.; Huneault, M. A. Hydrolytic stability of polylactide and poly(methyl methacrylate) blends. J. Appl. Polym. Sci.2018, 135, 45991.

    Article  CAS  Google Scholar 

  38. Hao, X. Q.; Kaschta, J.; Liu, X. H.; Pan, Y.; Schubert, D. W. Entanglement network formed in miscible PLA/PMMA blends and its role in rheological and thermo-mechanical properties of the blends. Polymer2015, 80, 38–45.

    Article  CAS  Google Scholar 

  39. Zhang, J. M.; Duan, Y. X.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules2005, 38, 8012–8021.

    Article  CAS  Google Scholar 

  40. Pan, P. J.; Liang, Z. C.; Zhu, B.; Dong, T.; Inoue, Y. Roles of physical aging on crystallization kinetics and induction period of poly(L-lactide). Macromolecules2008, 41, 8011–8019.

    Article  CAS  Google Scholar 

  41. Zhang, J. M.; Li, C. W.; Duan, Y. X.; Domb, A. J.; Ozaki, Y. Glass transition and disorder-to-order phase transition behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Vib. Spectr.2010, 53, 307–310.

    Article  CAS  Google Scholar 

  42. Berquier, J. M.; Arribart, H. Attenuated total reflection Fourier transform infrared spectroscopy study of poly(methyl methacrylate) adsorption on a silica thin film: Polymer/surface interactions. Langmuir1998, 14, 3716–3719.

    Article  CAS  Google Scholar 

  43. Steiner, G.; Zimmerer, C.; Salzer, R. Characterization of metalsupported poly(methyl methacrylate) microstructures by FTIR imaging spectroscopy. Langmuir2006, 22, 4125–4130.

    Article  CAS  PubMed  Google Scholar 

  44. Li, M. X.; Kim, S. H.; Choi, S. W.; Goda, K.; Lee, W. I. Effect of reinforcing particles on hydrolytic degradation behavior of poly(lactic acid) composites. Composites Part B2016, 96, 248–254.

    Article  CAS  Google Scholar 

  45. Raquez, J. M.; Habibi, Y.; Murariu, M.; Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci.2013, 38, 1504–1542.

    Article  CAS  Google Scholar 

  46. Zhang, Z. X.; Wang, W. Y.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Excellent electroactive shape memory performance of EVA/PCL/CNT blend composites with selectively localized CNTs. J. Phys. Chem. C2016, 120, 22793–22802.

    Article  CAS  Google Scholar 

  47. Xie, Y. N.; Liu, D. F.; Sun, D. X.; Yang, J. H.; Qi, X. D.; Wang, Y. Crystallization and concentration fluctuation of miscible poly(vinylidene fluoride)/poly(methyl methacrylate) blends containing carbon nanotubes: Molecular weight dependence of poly(methyl methacrylate). Eur. Polym. J.2018, 105, 478–490.

    Article  CAS  Google Scholar 

  48. Xavier, P.; Bose, S. Multiwalled-carbon-nanotube-induced miscibility in near-critical PS/PVME blends: Assessment through concentration fluctuations and segmental relaxation. J. Phys. Chem. B2013, 117, 8633–8646.

    Article  CAS  PubMed  Google Scholar 

  49. Fowkes. F. M. Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. J. Phys. Chem. B1962, 66, 382–382.

    Article  CAS  Google Scholar 

  50. Owens, D. K.; Wendt, R. C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci.1969, 13, 1741–1747.

    Article  CAS  Google Scholar 

  51. Shi, Y. Y.; Yang, J. H.; Huang, T.; Zhang, N.; Chen, C.; Wang, Y. Selective localization of carbon nanotubes at the interface of poly(L-lactide)/ethylene-co-vinyl Acetate resulting in lowered electrical resistivity. Composites Part B2013, 55, 463–469.

    Article  CAS  Google Scholar 

  52. http://www.surface-tension.de/solid-surface-energy.htm.

  53. Nuriel, S.; Liu, L.; Barber, A. H.; Wagner, H. D. Direct measurement of multiwall nanotube surface tension. Chem. Phys. Lett.2005, 404, 263–266.

    Article  CAS  Google Scholar 

  54. Kyutoku, H.; Maeda, N.; Sakamoto, H.; Nishimura, H.; Yamada, K. Effect of surface treatment of cellulose fiber (CF) on durability of PLA/CF bio-composites. Carbohydr. Polym.2019, 203, 95–102.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51473137), the International Science and Technology Cooperation Project of Sichuan Province (No. 2017HH0066), the International Science and Technology Cooperation Project of Chengdu (No. 2016-GH02-00097-HZ), and the Fundamental Research Funds for the Central Universities (2682019JQ04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Yu Li or Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Jin, XZ., Huang, T. et al. Poly(methyl methacrylate)-induced Microstructure and Hydrolysis Behavior Changes of Poly(L-lactic acid)/Carbon Nanotubes Composites. Chin J Polym Sci 38, 195–204 (2020). https://doi.org/10.1007/s10118-019-2323-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2323-z

Keywords

Navigation