Skip to main content
Log in

The Location-influenced Fluorescence of AIEgens in the Microphase-separated Structures

  • Rapid Communication
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The fluorescent probe techniques have been widely applied. When the fluorescence probes are selectively located in nano-structures, the fluorescence properties are highly influenced by the environment. Here, we systematically studied the location-influenced fluorescence of AIEgens in the microphase-separated structures. The AIEgen tetraphenylethene (TPE) was doped into polystyrene-b-polyisoprene (PS-{tib}-PI). TPE was selectively located in the PS nanodomains. The TPE fluorenscence was affected by the structural relaxation of PS when investigated in a wide range of temperatures, including the glass transiton and secondary transiton. When TPE groups were selectively located in the PI nanodomains, the fluorenscence was affected by the glass transitons of PI and PS blocks. Amphiphilic TPE derivative was located at the interface of the assembly. The fluorescence emission was influenced by the main transition and secondary transiton of PS blocks, as well as the main transition of PI blocks. These results would give new understanding of the interrelation between fluorescence probes and the nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Han, T.; Gui, C.; Lam, J. W. Y.; Jiang, M.; Xie, N.; Kwok, R. T. K.; Tang, B. Z. High-contrast visualization and differentiation of microphase separation in polymer blends by fluorescent AIE probes. Macromolecules 2017, 50, 5807–5815.

    Article  CAS  Google Scholar 

  2. Liang, G.; Wu, J.; Gao, H.; Wu, Q.; Lu, J.; Zhu, F.; Tang, B. Z. General platform for remarkably thermoresponsive fluorescent polymers with memory function. ACS Macro Lett. 2016, 5, 909–914.

    Article  CAS  Google Scholar 

  3. Wu, J. L.; Zhang, C.; Qin, W.; Quan, D. P.; Ge, M. L.; Liang, G. D. Thermoresponsive fluorescent semi-crystalline polymers decorated with aggregation induced emission luminogens. Chinese J. Polym. Sci. 2019, 37, 394–400.

    Article  CAS  Google Scholar 

  4. Liang, G.; Ren, F.; Gao, H.; Wu, Q.; Zhu, F.; Tang, B. Z. Continuously-tunable fluorescent polypeptides through a polymer-assisted assembly strategy. Polym. Chem. 2016, 7, 5181–5187.

    Article  CAS  Google Scholar 

  5. Guan, W.; Wang, S.; Lu, C.; Tang, B. Z. Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic-inorganic composites. Nat. Commun. 2016, 7, 11811.

    Article  Google Scholar 

  6. Feng, Z.; Zhong, J.; Guan, W.; Tian, R.; Lu, C.; Ding, C. Three-dimensional direct visualization of silica dispersion in polymer-based composites. Analyst 2018, 143, 2090–2095.

    Article  CAS  Google Scholar 

  7. Tian, R.; Zhong, J.; Lu, C.; Duan, X. Hydroxyl-triggered fluorescence for location of inorganic materials in polymer-matrix composites. Chem. Sci. 2018, 9, 218–222.

    Article  CAS  Google Scholar 

  8. Peng, H. Q.; Liu, B.; Wei, P.; Zhang, P.; Zhang, H.; Zhang, J.; Li, K.; Li, Y.; Cheng, Y.; Lam, J. W. Y.; Zhang, W.; Lee, C. S.; Tang, B. Z. Visualizing the initial step of self-assembly and the phase transition by stereogenic amphiphiles with aggregation-induced emission. ACS Nano 2019, 13, 839–846.

    Article  CAS  Google Scholar 

  9. Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.

    Article  CAS  Google Scholar 

  10. Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.

    Article  CAS  Google Scholar 

  11. Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741.

    Google Scholar 

  12. Liu, Y.; Deng, C.; Tang, L.; Qin, A.; Hu, R.; Sun, J. Z.; Tang, B. Z. Specific detection of D-glucose by a tetraphenylethene-based fluorescent sensor. J. Am. Chem. Soc. 2010, 133, 660–663.

    Article  Google Scholar 

  13. Bao, S.; Wu, Q.; Qin, W.; Yu, Q.; Wang, J.; Liang, G.; Tang, B. Z. Sensitive and reliable detection of glass transition of polymers by fluorescent probes based on AIE luminogens. Polym. Chem. 2015, 6, 3537–3542.

    Article  CAS  Google Scholar 

  14. Dong, Y.; Lam, J. W. Y.; Qin, A.; Sun, J.; Liu, J.; Li, Z.; Sun, J.; Sung, H. H. Y.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. Aggregation-induced and crystallization-enhanced emissions of 1,2-diphenyl-3,4-bis(diphenylmethylene)-1-cyclobutene. Chem. Commun. 2007, 3255–3257.

    Google Scholar 

  15. Cerveny, S.; Ghilarducci, A.; Salva, H.; Marzocca, A. J. Glass-transition and secondary relaxation in SBR-1502 from dynamic mechanical data. Polymer 2000, 41, 2227–2230.

    Article  CAS  Google Scholar 

  16. Fakhraai, Z.; Forrest, J. A. Measuring the surface dynamics of glassy polymers. Science 2008, 319, 600–604.

    Article  CAS  Google Scholar 

  17. Schmidt-Rohr, K.; Kulik, A. S.; Beckham, H. W.; Ohlemacher, A.; Pawelzik, U.; Boeffel, C.; Spiess, H. W. Molecular nature of the β relaxation in poly(methyl methacrylate) investigated by multidimensional NMR. Macromolecules 1994, 27, 4733–4745.

    Article  CAS  Google Scholar 

  18. Kulik, A. S.; Beckham, H. W.; Schmidt-Rohr, K.; Radloff, D.; Pawelzik, U.; Boeffel, C.; Spiess, H. W. Coupling of α and β processes in poly(ethyl methacrylate) investigated by multidimensional NMR. Macromolecules 1994, 27, 4746–4754.

    Article  CAS  Google Scholar 

  19. Garwe, F.; Schonhals, A.; Lockwenz, H.; Beiner, M.; Schroter, K.; Donth, E. Influence of cooperative α dynamics on local β relaxation during the development of the dynamic glass transition in poly(n-alkyl methacrylate)s. Macromolecules 1996, 29, 247–253.

    Article  CAS  Google Scholar 

  20. Song, Z.; Lv, X.; Gao, L.; Jiang, L. Dramatic differences in the fluorescence of AIEgen-doped micro- and macrophase separated systems. J. Mater. Chem. C 2018, 6, 171–177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21875009 and 51703006) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-Jia Yang, Hong-Wei Ma or Long-Cheng Gao.

Electronic Supplementary Information

10118_2019_2333_MOESM1_ESM.pdf

Electronic supplementary information (ESI) is available free of charge in the online version of this article at http://dx.doi.org/10.1007/s10118-019-2333-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhi, YF., Li, C., Song, ZH. et al. The Location-influenced Fluorescence of AIEgens in the Microphase-separated Structures. Chin J Polym Sci 37, 1060–1064 (2019). https://doi.org/10.1007/s10118-019-2333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2333-x

Keywords

Navigation