Skip to main content

Advertisement

Log in

Preparation of Degradable Polymenthide and Its Elastomers from Biobased Menthide via Organocatalyzed Ring-opening Polymerization and UV Curing

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Development of degradable polyester elastomers plays an important role in the applications of soft mateirals. Noncrystalline polymenthides (PMs) from menthol derived lactone monomers are excellent soft segments for preparing degradable polyester elastomers. By using cyclic trimeric phosphazene base (CTPB) as an organocatalyst, we successfully synthesized PMs with different molecular weights (8.2 kDa to 100.7 kDa) in high yields via ring-opening polymerization (ROP) of menthide. When a CTPB/urea binary catalytic system was adopted, the polymerizations proceeded in a more controlled manner. Using glycerol as initiator, star shaped PMs with well-defined structure were synthesized and subsequently end-capped by acrylate. UV irradiation of the terminal acrylate groups in the star-shaped PMs resulted in formation of chemically cross-linked polyester elastomers without heat or other stimuli. The obtained polyester elastomers exhibit matched modulus (3.8–5.5 MPa), tensile strength (0.56–0.68 MPa), and strain at break (280%–320%) with soft body tissues, displaying great potential in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, Y.; Romain, C.; Williams, C. K. Sustainable polymers from renewable resources. Nature 2016, 540, 354–362.

    Article  CAS  Google Scholar 

  2. Schneiderman, D. K.; Hillmyer, M. A. 50th Anniversary perspective: there is a great future in sustainable polymers. Macromolecules 2017, 50, 3733–3749.

    Article  CAS  Google Scholar 

  3. John, G.; Nagarajan, S.; Vemula, P. K.; Silverman, J. R.; Pillai, C. K. S. Natural monomers: a mine for functional and sustainable materials—occurrence, chemical modification and polymerization. Prog. Polym. Sci. 2019, 92, 158–209.

    Article  CAS  Google Scholar 

  4. Chen, X. S.; Chen, G. Q.; Tao, Y. H.; Wang, Y. Z.; Lv, X. B.; Zhang, L. Q.; Zhu, J.; Zhang, J.; Wang, X. H. Research progress in ecopolymers. Acta Polymerica Sinica (in Chinese) 2019, 50, 1068–1082.

    Google Scholar 

  5. Wang, S.; Kesava, S. V.; Gomez, E. D.; Robertson, M. L. Sustainable thermoplastic elastomers derived from fatty acids. Macromolecules 2013, 46, 7202–7212.

    Article  CAS  Google Scholar 

  6. Wang, Z.; Yuan, L.; Trenor, N. M.; Vlaminck, L.; Billiet, S.; Sarkar, A.; Du Prez, F. E.; Stefik, M.; Tang, C. Sustainable thermoplastic elastomers derived from plant oil and their “click-coupling” via TAD chemistry. Green Chem. 2015, 17, 3806–3818.

    Article  CAS  Google Scholar 

  7. Wang, Z.; Yuan, L.; Tang, C. Sustainable elastomers from renewable biomass. Acc. Chem. Res. 2017, 50, 1762–1773.

    Article  CAS  Google Scholar 

  8. Serrano, M. C.; Chung, E. J.; Ameer, G. A. Advances and applications of biodegradable elastomers in regenerative medicine. Adv. Funct. Mater. 2010, 20, 192–208.

    Article  CAS  Google Scholar 

  9. Liu, Q.; Jiang, L.; Shi, R.; Zhang, L. Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers—a review. Prog. Polym. Sci. 2012, 37, 715–765.

    Article  CAS  Google Scholar 

  10. Ye, H.; Zhang, K.; Kai, D.; Li, Z.; Loh, X. J. Polyester elastomers for soft tissue engineering. Chem. Soc. Rev. 2018, 47, 4545–4580.

    Article  CAS  Google Scholar 

  11. Wanamaker, C. L.; O’Leary, L. E.; Lynd, N. A.; Hillmyer, M. A.; Tolman, W. B. Renewable-resource thermoplastic elastomers based on polylactide and polymenthide. Biomacromolecules 2007, 8, 3634–3640.

    Article  CAS  Google Scholar 

  12. Guerin, W.; Helou, M.; Carpentier, J. F.; Slawinski, M.; Brusson, J. M.; Guillaume, S. M. Macromolecular engineering via ring-opening polymerization (1): L-lactide/trimethylene carbonate block copolymers as thermoplastic elastomers. Polym. Chem. 2013, 4, 1095–1106.

    Article  CAS  Google Scholar 

  13. Watts, A.; Kurokawa, N.; Hillmyer, M. A. Strong, resilient, and sustainable aliphatic polyester thermoplastic elastomers. Biomacromolecules 2017, 18, 1845–1854.

    Article  CAS  Google Scholar 

  14. Wanamaker, C. L.; Bluemle, M. J.; Pitet, L. M.; O’Leary, L. E.; Tolman, W. B.; Hillmyer, M. A. Consequences of polylactide stereochemistry on the properties of polylactide-polymenthidepolylactide thermoplastic elastomers. Biomacromolecules. 2009, 10, 2904–2911.

    Article  CAS  Google Scholar 

  15. Shin, J.; Lee, Y.; Tolman, W. B.; Hillmyer, M. A. Thermoplastic elastomers derived from menthide and tulipalin A. Biomacromolecules 2012, 13, 3833–3840.

    Article  CAS  Google Scholar 

  16. Hillmyer, M. A.; Tolman, W. B. Aliphatic polyester block polymers: renewable, degradable, and sustainable. Acc. Chem. Res. 2014, 47, 2390–2396.

    Article  CAS  Google Scholar 

  17. Dey, J.; Xu, H.; Shen, J.; Thevenot, P.; Gondi, S. R.; Nguyen, K. T.; Sumerlin, B. S.; Tang, L.; Yang, J. Development of biodegradable crosslinked urethane-doped polyester elastomers. Biomaterials 2008, 29, 4637–4649.

    Article  CAS  Google Scholar 

  18. Brutman, J. P.; De Hoe G. X.; Schneiderman, D. K.; Le, T. N.; Hillmyer, M. A. Renewable, degradable, and chemically recyclable cross-linked elastomers. Ind. Eng. Chem. Res. 001655, 11097–11106.

    Article  Google Scholar 

  19. De Hoe, G. X.; Zumstein, M. T.; Tiegs, B. J.; Brutman, J. P.; McNeill, K.; Sander, M.; Coates, G. W.; Hillmyer, M. A. Sustainable polyester elastomers from lactones: synthesis, properties, and enzymatic hydrolyzability. J. Am. Chem. Soc. 2018, 140, 963–973.

    Article  CAS  Google Scholar 

  20. Xu, S.; Chang, P.; Zhao, B.; Adeel, M.; Zheng, S. Formation of poly(ε-caprolactone) networks via supramolecular hydrogen bonding interactions. Chinese J. Polym. Sci. 2018, 37, 197–207.

    Article  Google Scholar 

  21. Zhang, D.; Hillmyer, M. A.; Tolman, W. B. Catalytic polymerization of a cyclic ester derived from a “cool” natural precursor. Biomacromolecules 2005, 6, 2091–2095.

    Article  CAS  Google Scholar 

  22. Shin, J.; Martello, M. T.; Shrestha, M.; Wissinger, J. E.; Tolman, W. B.; Hillmyer, M. A. Pressure-sensitive adhesives from renewable triblock copolymers. Macromolecules 2011, 44, 87–94.

    Article  CAS  Google Scholar 

  23. Wilson, J. A.; Hopkins, S. A.; Wright, P. M.; Dove, A. P. Synthesis and postpolymerization modification of one-pot ω-pentadecalactone block-like copolymers. Biomacromolecules 2015, 16, 3191–3200.

    Article  CAS  Google Scholar 

  24. Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.; Lohmeijer, B. G.; Hedrick, J. L. Organocatalytic ring-opening polymerization. Chem. Rev. 2007, 107, 5813–40.

    Article  CAS  Google Scholar 

  25. Ottou, W. N.; Sardon, H.; Mecerreyes, D.; Vignolle, J.; Taton, D. Update and challenges in organo-mediated polymerization reactions. Prog. Polym. Sci. 2016, 56, 64–115.

    Article  CAS  Google Scholar 

  26. Jiang, Z. L.; Zhao, J. P.; Zhang, G. Z. Readily prepared and tunable ionic organocatalysts for ring-opening polymerization of lactones. Chinese J. Polym. Sci. 2019, 37, 1205–1214.

    Article  CAS  Google Scholar 

  27. Zhang, C. J.; Zhang, X. H. Organocatalytic polymerization. Sci. Chin. Chem. 2019, 62, 1087–1089.

    Article  CAS  Google Scholar 

  28. Dove, A. P. Organic catalysis for ring-opening polymerization. ACS Macro Lett. 2012, 1, 1409–1412.

    Article  CAS  Google Scholar 

  29. Yuan, P.; Hong, M. Ring-opening polymerizations of the “nonstrained” γ-butyrolactone andits derivatives: an overview and outlook. Acta Polymerica Sinica (in Chinese) 2019, 50, 327–337.

    Google Scholar 

  30. An, Z. S.; Chen, C. L.; He, J. P.; Hong, C. Y.; Li, Z. B.; L,; Z., C.; Liu C.; Lv, X. B.; Qin, A. J.; Qu, C. K.; Tang, B. Z.; Tao, Y. H.; Wan, X. H.; Wang, G. W.; Wang, J.; Zheng, K.; Zou, W. K. Research and development of polymer synthetic chemistry in China. Acta Polymerica Sinica (in Chinese) 2019, 50, 1083–1132.

    Google Scholar 

  31. Li, H.; Zhao, N.; Ren, C.; Liu, S.; Li, Z. Synthesis of linear and star poly(γ-caprolactone) with controlled and high molecular weights via cyclic trimeric phosphazene base catalyzed ring-opening polymerization. Polym. Chem. 2017, 8, 7369–7374.

    Article  CAS  Google Scholar 

  32. Liu, S.; Li, H.; Zhao, N.; Li, Z. Stereoselective ring-opening polymerization of rac-lactide using organocatalytic cyclic trimeric phosphazene base. ACS Macro Lett. 2018, 7, 624–628.

    Article  CAS  Google Scholar 

  33. Li, Y.; Zhao, N.; Wei, C.; Sun, A.; Liu, S.; Li, Z. Binary organocatalytic system for ring-opening polymerization of ε-caprolactone and δ-valerolactone: synergetic effects for enhanced selectivity. Eur. Polym. J. 2019, 111, 11–19.

    Article  CAS  Google Scholar 

  34. Zhao, N.; Ren, C.; Li, H.; Li, Y.; Liu, S.; Li, Z. Selective ring-opening polymerization of non-strained gamma-butyrolactone catalyzed by a cyclic trimeric phosphazene base. Angew. Chem. Int. Ed. 2017, 56, 12987–12990.

    Article  CAS  Google Scholar 

  35. Shen, Y.; Zhang, J.; Zhao, N.; Liu, F.; Li, Z. Preparation of biorenewable poly(γ-butyrolactone)-b-poly(l-lactide) diblock copolyesters via one-pot sequential metal-free ring-opening polymerization. Polym. Chem. 2018, 9, 2936–2941.

    Article  CAS  Google Scholar 

  36. Shen, Y.; Zhang, J.; Zhao, Z.; Zhao, N.; Liu, F.; Li, Z. Preparation of amphiphilic poly(ethylene glycol)-b-poly(γ-butyrolactone) diblock copolymer via ring opening polymerization catalyzed by a cyclic trimeric phosphazene base or alkali alkoxide. Biomacromolecules 2019, 20, 141–148.

    Article  CAS  Google Scholar 

  37. Shen, Y.; Zhao, Z.; Li, Y.; Liu, S.; Liu, F.; Li, Z. A facile method to prepare high molecular weight bio-renewable poly(γ-butyrolactone) using a strong base/urea binary synergistic catalytic system. Polym. Chem. 2019, 10, 1231–1237.

    Article  CAS  Google Scholar 

  38. Zhao, N.; Ren, C.; Shen, Y.; Liu, S.; Li, Z. Facile synthesis of aliphatic ω-pentadecalactone containing diblock copolyesters via sequential rop with L-lactide, ε-caprolactone, and δ valerolactone catalyzed by cyclic trimeric phosphazene base with inherent tribasic characteristics. Macromolecules 2019, 52, 1083–1091.

    Article  Google Scholar 

  39. Dargaville, B. L.; Vaquette, C.; Peng, H.; Rasoul, F.; Chau, Y. Q.; Cooper-White, J. J.; Campbell, J. H.; Whittaker, A. K. Cross-linked poly(trimethylene carbonate-co-L-lactide) as a biodegradable, elastomeric scaffold for vascular engineering applications. Biomacromolecules 2011, 12, 3856–3869.

    Article  CAS  Google Scholar 

  40. Zumstein, M. T.; Kohler, H. P.; McNeill, K.; Sander, M. Enzymatic hydrolysis of polyester thin films: real-time analysis of film mass changes and dissipation dynamics. Environ. Sci. Technol. 2016, 50, 197–206.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21704048), the 111 Project (No. D17004), and the Taishan Scholars Constructive Engineering Foundation (No. tsqn20161031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Bo Li.

Electronic Supplementary Information

10118_2020_2415_MOESM1_ESM.pdf

Preparation of Degradable Polymenthide and Its Elastomers from Biobased Menthide via Organocatalyzed Ring-opening Polymerization and UV Curing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Cao, XX., Shi, JF. et al. Preparation of Degradable Polymenthide and Its Elastomers from Biobased Menthide via Organocatalyzed Ring-opening Polymerization and UV Curing. Chin J Polym Sci 38, 1092–1098 (2020). https://doi.org/10.1007/s10118-020-2415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2415-9

Keywords

Navigation