Skip to main content
Log in

Bioremediation potential and lead removal capacity of heavy metal-tolerant yeasts isolated from Dayet Oum Ghellaz Lake water (northwest of Algeria)

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Seven metal-resistant yeast strains were isolated and selected from Dayet Oum Ghellaz Lake water (northwest of Algeria) known as a highly polluted area by lead and cadmium. The yeast strains were screened on the basis of their resistance to seven heavy metals Hg, Cr, Cd, Pb, Cu, Zn, and Fe and characterized by molecular and phylogenetic analysis. The sequencing of the D1/D2 domain of the 26S rRNA genes revealed the affiliation of the seven yeast isolates to Rhodotorula mucilaginosa, Clavispora lusitaniae, and Wickerhamomyces anomalus species. All yeast strains were halotolerant as they were able to grow in 10–15% NaCl. The yeast isolates were highly resistant to the studied heavy metals and exhibited different tolerance according to the metal type. The highest minimum inhibitory concentrations (MIC) were observed in R. mucilaginosa RO7 and W. anomalus WO2 strains which were then selected for lead removal assays. The present study is the first to investigate the lead elimination by W. anomalus. The lead uptake was significantly affected by biomass concentration in a reverse relationship, with purification percentages estimated at 98.15 ± 0.9% and 97.046 ± 0.47% and removal efficiency of 12.68 ± 0.91 and 15.55 ± 0.72 mg/g for W. anomalus WO2 and R. mucilaginosa RO7, respectively. The investigated metal-tolerant yeast strains proved to be promising candidates for bioremediation processes of heavy metals. This work amends the metal-resistant yeast bank with new strains having interesting abilities to resist to relatively high concentrations of toxic heavy metals and which can be used in the near future as low-cost biosorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

The authors acknowledge the financial support of the Algerian General Directorate of Scientific Research and Technological Development (DGRSDT) and the Algerian Ministry of Higher Education and Scientific Research (MESRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chahrazed Aibeche.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aibeche, C., Selami, N., Zitouni-Haouar, F.EH. et al. Bioremediation potential and lead removal capacity of heavy metal-tolerant yeasts isolated from Dayet Oum Ghellaz Lake water (northwest of Algeria). Int Microbiol 25, 61–73 (2022). https://doi.org/10.1007/s10123-021-00191-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-021-00191-z

Keywords

Navigation