Skip to main content

Advertisement

Log in

Management of waste sheep wool as valuable organic substrate in European Union countries

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Sheep wool is keratin-rich by-product of sheep breeding and textile industry. Due to complex structure of keratin, this wastes are quite resistant to degradation and represent a serious environmental problem. Waste wool is often converted to different hydrolysates, which are mainly prepared by environmental unfriendly physico-chemical treatments, resulting in destruction of some amino acids and energy loss. Use of biotechnological approaches, such as microbial or enzymatic pretreatment, and composting, can significantly reduce the environmental impact, and produce useful products, such as fertilizers or substrates for biogas production, and high-added value products (peptides, amino acids and keratinolytic enzymes). In this review we compare different ways of waste wool processing, focused on biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Callegaro K, Brandelli A, Daroit DJ (2019) Beyond plucking: Feathers bioprocessing into valuable protein hydrolysates. Waste Manag 95:399–415. https://doi.org/10.1016/j.wasman.2019.06.040

    Article  Google Scholar 

  2. Korniłłowicz-Kowalska T, Bohacz J (2011) Biodegradation of keratin waste: theory and practical aspects. Waste Manag 31:1689–1701. https://doi.org/10.1016/j.wasman.2011.03.024

    Article  Google Scholar 

  3. Eslahi N, Dadashian F, Nejad NH (2013) An investigation on keratin extraction from wool and feather waste by enzymatic hydrolysis. Prep Biochem Biotechnol 43:624–648. https://doi.org/10.1080/10826068.2013.763826

    Article  Google Scholar 

  4. Brandelli A, Daroit DJ, Riffel A (2010) Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biot 85:1735–1750. https://doi.org/10.1007/s00253-009-2398-5

    Article  Google Scholar 

  5. Gousterova A, Braikova D, Goshev I, Christov P, Tishinov K, Vasileva-Tonkova E, Haertle T, Nedkov P (2005) Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis. Lett Appl Microbiol 40:335–340. https://doi.org/10.1111/j.1472-765X.2005.01692.x

    Article  Google Scholar 

  6. Zaghloul TI, Embaby AM, Elmahdy AR (2011) Key determinants affecting sheep wool biodegradation directed by keratinase-producing Bacillus subtilis recombinant strain. Biodegradation 22:111–128. https://doi.org/10.1007/s10532-010-9381-9

    Article  Google Scholar 

  7. Eurostat (2019) Sheep population-annual data. European Union. European Commission. https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=apro_mt_lssheep&lang=en. Accessed 20 Oct 2019

  8. Sargison N (2008) Sheep flock health: a planned approach, 1st edn. Willey-Blackwell Publishing Ltd., Oxford

    Book  Google Scholar 

  9. Zoccola M, Montarsolo A, Mossotti R, Patrucco A, Tonin C (2015) Green hydrolysis as an emerging technology to turn wool waste into organic nitrogen fertilizer. Waste Biomass Valoriz 6:891–897. https://doi.org/10.1007/s12649-015-9393-0

    Article  Google Scholar 

  10. IWTO (2020) 02 Wool notes, a summary of wool textile information, including notes and interesting wool facts. International wool textile organization. https://iwto.org/sdm_downloads/wool-notes. Accessed 9 July 2020

  11. Bhavsar P, Zoccola M, Patrucco A, Montarsolo A, Mossotti R, Rovero G, Giansetti M, Tonin C (2016) Superheated water hydrolysis of waste wool in a semi-industrial reactor to obtain nitrogen fertilizers. ACS Sustain Chem Eng 4:6722–6731. https://doi.org/10.1021/acssuschemeng.6b01664

    Article  Google Scholar 

  12. Aluigi A, Zoccola M, Vineis C, Tonin C, Ferrero F, Canetti M (2007) Study on the structure and properties of wool keratin regenerated from formic acid. Int J Biol Macromol 41:266–273. https://doi.org/10.1016/j.ijbiomac.2007.03.002

    Article  Google Scholar 

  13. Hill P, Brantley H, Van Dyke M (2010) Some properties of keratin biomaterials: kerateines. Biomaterials 31:585–593. https://doi.org/10.1016/j.biomaterials.2009.09.076

    Article  Google Scholar 

  14. Aluigi A, Vineis C, Varesano A, Mazzuchetti G, Ferrero F, Tonin C (2008) Structure and properties of keratin/PEO blend nanofibers. Eur Polym J 44:2465–2475. https://doi.org/10.1016/j.eurpolymj.2008.06.004

    Article  Google Scholar 

  15. Daroit DJ, Brandelli A (2014) A current assessment on the production of bacterial keratinases. Crit Rev Biotechnol 34:372–384. https://doi.org/10.3109/07388551.2013.794768

    Article  Google Scholar 

  16. Brandelli A (2008) Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol 1:105–116. https://doi.org/10.1007/s11947-007-0025-y

    Article  Google Scholar 

  17. Anbu P, Gopinath SCB, Hilda A, Lakshmi Priya T, Annadurai G (2005) Purification of keratinase from poultry farm isolate-Scopulariopsis brevicaulis and statistical optimization of enzyme activity. Enzyme Microb Technol 36:639–647. https://doi.org/10.1016/j.enzmictec.2004.07.019

    Article  Google Scholar 

  18. Onifade AA, Al-Sane NA, Al-Musallam AA, Al-Zarban S (1998) A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour Technol 66:1–11. https://doi.org/10.1016/S0960-8524(98)00033-9

    Article  Google Scholar 

  19. Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biot 70:21–33. https://doi.org/10.1007/s00253-005-0239-8

    Article  Google Scholar 

  20. Vidmar B, Vodovnik M (2018) Microbial keratinases: enzymes with promising biotechnological applications. Food Technol Biotechnol 56:312–328. https://doi.org/10.17113/ftb.56.03.18.5658

    Article  Google Scholar 

  21. Riessen S, Antranikian G (2001) Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extremophiles 5:399–408. https://doi.org/10.1007/s007920100209

    Article  Google Scholar 

  22. Lange L, Huang Y, Kamp PB (2016) Microbial decomposition of keratin in nature—a new hypothesis of industrial relevance. Appl Microbiol Biot 100:2083–2096. https://doi.org/10.1007/s00253-015-7262-1

    Article  Google Scholar 

  23. Liu Q, Zhang T, Song N, Li Q, Wang Z, Zhang X, Lu X, Fang J, Chen J (2014) Purification and characterization of four key enzymes from a feather-degrading Bacillus subtilis from the gut of tarantula Chilobrachys guangxiensis. Int Biodeterior Biodegrad 96:26–32. https://doi.org/10.1016/j.ibiod.2014.08.008

    Article  Google Scholar 

  24. Zhang RX, Gong JS, Zhang DD, Su C, Hou YS, Li H, Shi JS, Xu ZH (2016) A metallo-keratinase from newly isolated Acinetobacter sp. R-1 with low collagenase activity and its biotechnological application potential in leather industry. Bioproc Biosyst Eng 39:193–204. https://doi.org/10.1007/s00449-015-1503-7

    Article  Google Scholar 

  25. Singh S, Bajaj KB (2017) Potential application spectrum of microbial proteases for clean and green industrial production. Energy Ecol Environ 2:370–386. https://doi.org/10.1007/s40974-017-0076-5

    Article  Google Scholar 

  26. Shen J, Rushforth M, Cavaco-Paulo A, Guebitz G, Lenting H (2007) Development and industrialisation of enzymatic shrink-resist process based on modified proteases for wool machine washability. Enzyme Microb Technol 40:1656–1661. https://doi.org/10.1016/j.enzmictec.2006.07.034

    Article  Google Scholar 

  27. Infante I, Morel MA, Ubalde MC, Martinez-Rosales C, Belvisi S, Castro-Sowinski S (2010) Wool-degrading Bacillus isolates: extracellular protease production for microbial processing of fabrics. World J Microb Biot 26:1047–1052. https://doi.org/10.1007/s11274-009-0268-z

    Article  Google Scholar 

  28. Zhang RX, Gong JS, Su C, Zhang DD, Tian H, Dou WF, Li H, Shi JS, Xu ZH (2016) Biochemical characterization of a novel surfactant-stable serine keratinase with no collagenase activity from Brevibacillus parabrevis CGMCC 10798. Int J Biol Macromol 93:843–851. https://doi.org/10.1016/j.ijbiomac.2016.09.063

    Article  Google Scholar 

  29. Fang Z, Zhang J, Liu B, Du G, Chen J (2013) Biochemical characterization of three keratinolytic enzymes from Stenotrophomonas maltophilia BBE11-1 for biodegrading keratin waste. Int Biodeterior Biodegrad 82:166–172. https://doi.org/10.1016/j.ibiod.2013.03.008

    Article  Google Scholar 

  30. Gushterova A, Vasileva-Tonkova E, Dimova E, Nedkov P, Haertle T (2005) Keratinase production by newly isolated Antarctic actinomycete strains. World J Microb Biot 21:831–834. https://doi.org/10.1007/s11274-004-2241-1

    Article  Google Scholar 

  31. Kunert J (1989) Biochemical mechanism of keratin degradation by the actinomycete Streptomyces fradiae and the fungus Microsporum gypseum: a comparison. J Basic Microbiol 29:597–604. https://doi.org/10.1002/jobm.3620290909

    Article  Google Scholar 

  32. Moreira FG, de Souza CGM, Costa MAF, Reis S, Peralta RM (2007) Degradation of keratinous materials by the plant pathogenic fungus Myrothecium verrucaria. Mycopathologia 163:153–160. https://doi.org/10.1007/s11046-007-0096-3

    Article  Google Scholar 

  33. Kavkler K, Demšar A (2012) Impact of fungi on contemporary and accelerated aged wool fibres. Polym Degrad Stabil 97:786–792. https://doi.org/10.1016/j.polymdegradstab.2012.02.002

    Article  Google Scholar 

  34. Farag AM, Hassan MA (2004) Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme Microb Technol 34:85–93. https://doi.org/10.1016/j.enzmictec.2003.09.002

    Article  Google Scholar 

  35. Gradišar H, Friedrich J, Križaj I, Jerala R (2005) Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microspores to some known proteases. Appl Environ Microbiol 71:3420–3426. https://doi.org/10.1128/AEM.71.7.3420-3426.2005

    Article  Google Scholar 

  36. Abdel-Gawad KM (1997) Mycological and some physiological studies of keratinophilic and other moulds associated with sheep wool. Microbiol Res 152:181–188. https://doi.org/10.1016/S0944-5013(97)80011-0

    Article  Google Scholar 

  37. Iglesias MS, Sequeiros C, Garcia S, Olivera NL (2017) Newly isolated Bacillus sp. G51 from Patagonian wool producers an enzyme combination suitable for felt-resist treatments of organic wool. Bioproc Biosyst Eng 40:833–842. https://doi.org/10.1007/s00449-017-1748-4

    Article  Google Scholar 

  38. Jovančić P, Jocić D, Dumić J (1998) The efficiency of an enzyme treatment in reducing wool shrinkage. J Text Inst 89:390–400. https://doi.org/10.1080/00405009808658625

    Article  Google Scholar 

  39. Queiroga AC, Pintado MM, Malcata FX (2007) Novel microbial-mediated modifications of wool. Enzyme Microb Technol 40:1491–1495. https://doi.org/10.1016/j.enzmictec.2006.10.037

    Article  Google Scholar 

  40. Queiroga AC, Pintado ME, Malcata FX (2012) Potential use of wool-associated Bacillus species for biodegradation of keratinous materials. Int Biodeterior Biodegrad 70:60–65. https://doi.org/10.1016/j.ibiod.2011.12.013

    Article  Google Scholar 

  41. Hou Y, Wu Z, Dai Z, Wang G, Wu G (2017) Protein hydrolysates in animal nutrition: industrial production, bioactive peptides, and functional significance. J Anim Sci Biotechnol 8:24–36. https://doi.org/10.1186/s40104-017-0153-9

    Article  Google Scholar 

  42. Wang K, Li R, Ma JH, Jian YK, Che JN (2016) Extracting keratin from wool by using l-cysteine. Green Chem 18:476–481. https://doi.org/10.1039/c5gc01254f

    Article  Google Scholar 

  43. Holkar CR, Jain SS, Jedhav AJ, Pinjari DV (2018) Valorization of keratin based waste. Process Saf Environ 115:85–98. https://doi.org/10.1016/j.psep.2017.08.045

    Article  Google Scholar 

  44. Wang X, Parsons CM (1997) Effect of processing systems on protein quality of feather meals and hog hair meals. Poult Sci 76:491–496. https://doi.org/10.1093/ps/76.3.491

    Article  Google Scholar 

  45. Moritz JS, Latshaw JD (2001) Indicators of nutritional value of hydrolysed feather meal. Poult Sci 80:79–86. https://doi.org/10.1093/ps/80.1.79

    Article  Google Scholar 

  46. Suzuki Y, Tsujimoto Y, Matsiu H, Watanabe K (2006) Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. J Biosci Bioeng 102:73–81. https://doi.org/10.1263/jbb.102.73

    Article  Google Scholar 

  47. Holkar CR, Jadhav AJ, Bhavsar PS, Kannan S, Pinjari DV, Pandit AB (2016) Acoustic cavitation assisted alkaline hydrolysis of wool based keratins to produce organic amendment fertilizers. ACS Sustain Chem Eng 4:2789–2796. https://doi.org/10.1021/acssuschemeng.6b00298

    Article  Google Scholar 

  48. Fakhfakh N, Ktari N, Siala R, Nasri M (2013) Wool-waste valorization: production of protein hydrolysate with high antioxidative potential by fermentation with a new keratinolytic bacterium, Bacillus pumilus A1. J Appl Microbiol 115:424–433. https://doi.org/10.1111/jam.12246

    Article  Google Scholar 

  49. Fang Z, Zhang J, Liu B, Du G, Chen J (2013) Biodegradation of wool waste and keratinase production in scale-up fermenter with different strategies by Stenotrophomonas maltophilia BBE11-1. Bioresour Technol 140:286–291. https://doi.org/10.1016/j.biortech.2013.04.091

    Article  Google Scholar 

  50. Zhang N, Wang Q, Yuan J, Cui L, Wang P, Yu Y, Fan X (2018) Highly efficient and eco-friendly wool degradation by l-cysteine-assisted esperase. J Clean Prod 192:433–442. https://doi.org/10.1016/j.jclepro.2018.05.008

    Article  Google Scholar 

  51. Hustvedt G, Meier E, Waliczek T (2016) The feasibility of large-scale composting of waste wool. In: Muthu SS, Gardetti MA (eds) Green fashion. Environmental footprints and eco-design of products and processes, vol 1. Springer, Singapore, pp 95–107. https://doi.org/10.1007/978-981-10-0111-6_4

    Chapter  Google Scholar 

  52. Patkowska-Sokola B, Dobrzanski Z, Osman K, Bodkowski R, Zygadlik K (2009) The content of chosen chemical elements in wool of sheep of different origins and breeds. Arch Tierz 52:410–418

    Google Scholar 

  53. McNeil SJ, Sunderland MR, Zaitseva LI (2007) Closed-loop wool carpet recycling. Resour Conserv Recycl 51:220–224. https://doi.org/10.1016/j.resconrec.2006.09.006

    Article  Google Scholar 

  54. Deb-Choudhury S, Bermingham EN, Young W, Barnett MPG, Knowles SO, Harland D, Clerens S, Dyer JM (2018) The effects of a wool hydrolysate on short-chain fatty acid production and fecal microbial composition in the domestic cat (Felis catus). Food Funct 9:4107–4121. https://doi.org/10.1039/C7FO02004J

    Article  Google Scholar 

  55. Abdallah AM, Ugolini F, Baronti S, Maienza A, Ungaro F, Camilli F (2019) Assessment of two sheep wool residues from textile industry as organic fertilizer in sunflower and maize cultivation. J Soil Sci Plant Nutr 19:793–807. https://doi.org/10.1007/s42729-019-00079-y

    Article  Google Scholar 

  56. Nustorova M, Braikova D, Gousterova A, Vasileva-Tonkova E, Nedkov P (2006) Chemical, microbiological and plant analysis of soil fertilized with alkaline hydrolysate of sheep’s wool waste. World J Microb Biot 22:383–390. https://doi.org/10.1007/s11274-005-9045-9

    Article  Google Scholar 

  57. Gorecki RS, Gorecki MT (2010) Utilization of waste wool as substrate amendment in pot cultivation of tomato, sweet pepper, and eggplant. Pol J Environ Stud 19:1083–1087

    Google Scholar 

  58. Zheljazkov VD (2005) Assessment of wool waste and hair waste as soil amendment and nutrient source. J Environ Qual 34:2310–2317. https://doi.org/10.2134/jeq2004.0332

    Article  Google Scholar 

  59. Caceres R, Malinska K, Marfa O (2018) Nitrification within composting: a review. Waste Manag 72:119–137. https://doi.org/10.1016/j.wasman.2017.10.049

    Article  Google Scholar 

  60. Tiwari VN, Pathak AN, Lehri LK (1989) Effect of cattle dung and rock phosphate on composting of wool waste. Biol Wastes 27:237–241. https://doi.org/10.1016/0269-7483(89)90004-9

    Article  Google Scholar 

  61. Tiwari VN, Pathak AN, Lehri LK (1989) Response to differently amended wool-waste composts on yield and uptake of nutrients by crops. Biol Wastes 28:313–318. https://doi.org/10.1016/0269-7483(89)90115-8

    Article  Google Scholar 

  62. Volchatova IV, Belovezhets LA, Medvedeva SA (2002) Microbiological and biochemical investigation of succession in lignin-containing compost piles. Microbiology 71:467–470. https://doi.org/10.1023/A:1019857913599

    Article  Google Scholar 

  63. Pearson JS, Lu F, Gandhi K (2004) Disposal of wool scouring sludge by composting. Autex Res J 4:147–156

    Google Scholar 

  64. Kabir MM, Forgacs G, Horvath IS (2013) Enhanced methane production from wool textile residues by thermal and enzymatic pretreatment. Process Biochem 48:575–580. https://doi.org/10.1016/j.procbio.2013.02.029

    Article  Google Scholar 

  65. Kuzmanova E, Zhelev N, Akunna JC (2018) Effect of liquid nitrogen pre-treatment on various types of wool waste fibres for biogas production. Heliyon 4:e00619. https://doi.org/10.1016/j.heliyon.2018.e00619

    Article  Google Scholar 

  66. Schoen EJ, Bagley DM (2012) Biogas production and feasibility of energy recovery systems for anaerobic treatment of wool-scouring effluent. Resour Conserv Recycl 62:21–30. https://doi.org/10.1016/j.resconrec.2012.02.004

    Article  Google Scholar 

  67. Taskin M, Unver Y, Firat A, Ortucu S, Yildiz M (2016) Sheep wool protein hydrolysate: a new peptone source for microorganisms. J Chem Technol Biot 91:1675–1680. https://doi.org/10.1002/jctb.4971

    Article  Google Scholar 

  68. Li Y, Xu R, Wang B, Wei J, Wang L, Shen M, Yang J (2019) Enhanced N-doped porous carbon derived from KOH-activated waste wool: a promising material for selective adsorption of CO2/CH4 and CH4/N2. Nanomaterials 9:266. https://doi.org/10.3390/nano9020266

    Article  Google Scholar 

  69. Patnaik A, Mvubu M, Muniyasamy S, Botha A, Anandijwala RD (2015) Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy Build 92:161–169. https://doi.org/10.1016/j.enbuild.2015.01.056

    Article  Google Scholar 

  70. Monier M, Ayad DM, Sarhan AA (2010) Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers. J Hazard Mater 176:348–355. https://doi.org/10.1016/j.jhazmat.2009.11.034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romana Marinšek Logar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petek, B., Marinšek Logar, R. Management of waste sheep wool as valuable organic substrate in European Union countries. J Mater Cycles Waste Manag 23, 44–54 (2021). https://doi.org/10.1007/s10163-020-01121-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-020-01121-3

Keywords

Navigation