Skip to main content

Advertisement

Log in

Influence of ferrochrome ash on mechanical and microstructure properties of ambient cured fly ash-based geopolymer concrete

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Earlier studies indicated that the reactive MgO reduces shrinkage crack and porosity, and accelerates the hydration and strength development. Ferrochrome ash (FCA), a waste generated from ferrochrome industry, is a rich source of MgO apart from the aluminosilicate compositions and hence can fulfil the need for added reactive MgO. With this objective, several geopolymer mixes are prepared by varying mix proportions of FCA and FA from 20 to 80% in the source mix. The alkaline solutions of sodium hydroxide and sodium silicate were used to activate these sources. The effect of FCA on resulting geopolymer concrete mix is evaluated through workability, compressive strength, microstructural and mineralogical analysis. Based on these extensive studies it is observed that a mix containing FCA and FA in 60:40 ratio can be best suited for geopolymerization that resulted in the 28-day compressive strength of 29.3 MPa under ambient curing condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig.10

Similar content being viewed by others

References

  1. Das SK, Mishra S, Das D et al (2021) Characterization and utilization of coal ash for synthesis of building materials. In: Jyothi RK, Parhi PK (eds) Clean coal technologies. Springer International Publishing, Cham, pp 487–509

    Chapter  Google Scholar 

  2. Das SK, Mishra J, Mustakim SM et al (2021) Sustainable utilization of ultrafine rice husk ash in alkali activated concrete: characterization and performance evaluation. J Sustain Cem Mater 1–19. https://doi.org/10.1080/21650373.2021.1894265

  3. Duxson P, Fernández-Jiménez A, Provis JL et al (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  4. Part WK, Ramli M, Cheah CB (2015) An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Constr Build Mater 77:370–395. https://doi.org/10.1016/j.conbuildmat.2014.12.065

    Article  Google Scholar 

  5. Toniolo N, Boccaccini AR (2017) Fly ash-based geopolymers containing added silicate waste. Review Ceram Int 43:14545–14551. https://doi.org/10.1016/j.ceramint.2017.07.221

    Article  Google Scholar 

  6. Lee S, van Riessen A, Chon CM et al (2016) Impact of activator type on the immobilisation of lead in fly ash-based geopolymer. J Hazard Mater 305:59–66. https://doi.org/10.1016/j.jhazmat.2015.11.023

    Article  Google Scholar 

  7. Van Jaarsveld JGS, Van Deventer JSJ (1999) Effect of metal contaminants on the formation and properties of waste-based geopolymers. Cem Concr Res 29:1189–1200. https://doi.org/10.1016/S0008-8846(99)00032-0

    Article  Google Scholar 

  8. Acharya PK, Patro SK (2016) Utilization of ferrochrome wastes such as ferrochrome ash and ferrochrome slag in concrete manufacturing. Waste Manag Res 34:764–774. https://doi.org/10.1177/0734242X16654751

    Article  Google Scholar 

  9. Acharya PK, Patro SK (2015) Effect of lime and ferrochrome ash (FA) as partial replacement of cement on strength, ultrasonic pulse velocity and permeability of concrete. Constr Build Mater 94:448–457. https://doi.org/10.1016/j.conbuildmat.2015.07.081

    Article  Google Scholar 

  10. Acharya PK, Patro SK (2016) Use of ferrochrome ash (FCA) and lime dust in concrete preparation. J Clean Prod 131:237–246. https://doi.org/10.1016/j.jclepro.2016.05.042

    Article  Google Scholar 

  11. Acharya PK, Patro SK (2016) Acid resistance, sulphate resistance and strength properties of concrete containing ferrochrome ash (FA) and lime. Constr Build Mater 120:241–250. https://doi.org/10.1016/j.conbuildmat.2016.05.099

    Article  Google Scholar 

  12. Kumar BC, Yaragal SC, Das BB (2020) Ferrochrome ash—Its usage potential in alkali activated slag mortars. J Clean Prod 257:120577. https://doi.org/10.1016/j.jclepro.2020.120577

    Article  Google Scholar 

  13. Mishra J, Das SK, Krishna RS, Nanda B (2020) Utilization of ferrochrome ash as a source material for production of geopolymer concrete for a cleaner sustainable environment. Indian Concr J 94:40–49

    Google Scholar 

  14. Mishra J, Kumar Das S, Krishna RS et al (2020) Synthesis and characterization of a new class of geopolymer binder utilizing ferrochrome ash (FCA) for sustainable industrial waste management. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.02.832

    Article  Google Scholar 

  15. Yao ZT, Ji XS, Sarker PK et al (2015) A comprehensive review on the applications of coal fly ash. Earth-Sci Rev 141:105–121

    Article  Google Scholar 

  16. Blissett RS, Rowson NA (2012) A review of the multi-component utilisation of coal fly ash. Fuel 97:1–23

    Article  Google Scholar 

  17. Van Jaarsveld JGS, Van Deventer JSJ, Lorenzen L (1997) The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory Appl Miner Eng 10:659–669. https://doi.org/10.1016/s0892-6875(97)00046-0

    Article  Google Scholar 

  18. Nath SK, Kumar S (2019) Reaction kinetics of fly ash geopolymerization: role of particle size controlled by using ball mill. Adv Powder Technol 30:1079–1088. https://doi.org/10.1016/j.apt.2019.03.003

    Article  Google Scholar 

  19. Nath SK, Mukherjee S, Maitra S, Kumar S (2014) Ambient and Elevated temperature geopolymerization behaviour of class F fly ash. Trans Indian Ceram Soc 73:126–132. https://doi.org/10.1080/0371750X.2014.922428

    Article  Google Scholar 

  20. Chindaprasirt P, Chareerat T, Sirivivatnanon V (2007) Workability and strength of coarse high calcium fly ash geopolymer. Cem Concr Compos 29:224–229. https://doi.org/10.1016/j.cemconcomp.2006.11.002

    Article  Google Scholar 

  21. Nath SK, Kumar S (2020) Role of particle fineness on engineering properties and microstructure of fly ash derived geopolymer. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.117294

    Article  Google Scholar 

  22. Nath SK (2018) Geopolymerization behavior of ferrochrome slag and fly ash blends. Constr Build Mater 181:487–494. https://doi.org/10.1016/j.conbuildmat.2018.06.070

    Article  Google Scholar 

  23. Kumar S, Kumar R, Mehrotra SP (2010) Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J Mater Sci 45:607–615. https://doi.org/10.1007/s10853-009-3934-5

    Article  Google Scholar 

  24. Saha S, Mohanty T, Saha P (2021) Mechanical properties of fly ash and ferrochrome ash-based geopolymer concrete using recycled aggregate. In: Das BB, Barbhuiya S, Gupta R, Saha P (eds) Lecture notes in civil engineering. Springer, Singapore, pp 417–426

    Google Scholar 

  25. Ben HM, Lothenbach B, Le Saout G, Winnefeld F (2011) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part I: effect of MgO. Cem Concr Res 41:955–963. https://doi.org/10.1016/j.cemconres.2011.05.002

    Article  Google Scholar 

  26. Bernal SA, San Nicolas R, Myers RJ et al (2014) MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cem Concr Res 57:33–43. https://doi.org/10.1016/j.cemconres.2013.12.003

    Article  Google Scholar 

  27. Jin F, Gu K, Al-Tabbaa A (2015) Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste. Cem Concr Compos 57:8–16. https://doi.org/10.1016/j.cemconcomp.2014.10.007

    Article  Google Scholar 

  28. Abdel-Gawwad HA, Abd El-Aleem S (2015) Effect of reactive magnesium oxide on properties of alkali activated slag geopolymer cement pastes. Ceram—Silik 59:37–47

    Google Scholar 

  29. Abdalqader AF, Jin F, Al-Tabbaa A (2015) Characterisation of reactive magnesia and sodium carbonate-activated fly ash/slag paste blends. Constr Build Mater 93:506–513. https://doi.org/10.1016/j.conbuildmat.2015.06.015

    Article  Google Scholar 

  30. Lee NK, Koh KT, Kim MO et al (2017) Physicochemical changes caused by reactive MgO in alkali-activated fly ash/slag blends under accelerated carbonation. Ceram Int 43:12490–12496. https://doi.org/10.1016/j.ceramint.2017.06.119

    Article  Google Scholar 

  31. Jin F, Gu K, Al-Tabbaa A (2014) Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste. Constr Build Mater 51:395–404. https://doi.org/10.1016/j.conbuildmat.2013.10.081

    Article  Google Scholar 

  32. Winnefeld F, Ben HM, Le Saout G et al (2014) Influence of slag composition on the hydration of alkali-activated slags. J Sustain Cem Mater 4:85–100. https://doi.org/10.1080/21650373.2014.955550

    Article  Google Scholar 

  33. Vo D-H, Hwang C-L, Tran Thi K-D et al (2020) Effect of fly ash and reactive MgO on the engineering properties and durability of high-performance concrete produced with alkali-activated slag and recycled aggregate. J Mater Civ Eng 32:04020332. https://doi.org/10.1061/(asce)mt.1943-5533.0003420

    Article  Google Scholar 

  34. Hwang CL, Vo DH, Tran VA, Yehualaw MD (2018) Effect of high MgO content on the performance of alkali-activated fine slag under water and air curing conditions. Constr Build Mater 186:503–513. https://doi.org/10.1016/j.conbuildmat.2018.07.129

    Article  Google Scholar 

  35. Li Z, Zhang W, Wang R et al (2019) Effects of reactive MgO on the reaction process of geopolymer. Mater (Basel) 12:526. https://doi.org/10.3390/ma12030526

    Article  Google Scholar 

  36. Jang JG, Park SM, Kim GM, Lee HK (2017) Stability of MgO-modified geopolymeric gel structure exposed to a CO2-rich environment. Constr Build Mater 151:178–185. https://doi.org/10.1016/j.conbuildmat.2017.06.088

    Article  Google Scholar 

  37. Perera DS, Cashion JD, Blackford MG et al (2007) Fe speciation in geopolymers with Si/Al molar ratio of ∼2. J Eur Ceram Soc 27:2697–2703. https://doi.org/10.1016/j.jeurceramsoc.2006.10.006

    Article  Google Scholar 

  38. Bell JL, Kriven WM (2009) Mechanical properties and performance of engineering ceramics and composites IV. John Wiley and Sons

    Google Scholar 

  39. Lemougna PN, MacKenzie KJD, Jameson GNL et al (2013) The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: A 57Fe Mössbauer spectroscopy study. J Mater Sci 48:5280–5286. https://doi.org/10.1007/s10853-013-7319-4

    Article  Google Scholar 

  40. Kaze CR, Djobo JNY, Nana A et al (2018) Effect of silicate modulus on the setting, mechanical strength and microstructure of iron-rich aluminosilicate (laterite) based-geopolymer cured at room temperature. Ceram Int 44:21442–21450. https://doi.org/10.1016/j.ceramint.2018.08.205

    Article  Google Scholar 

  41. Kaya K, Soyer-Uzun S (2016) Evolution of structural characteristics and compressive strength in red mud-metakaolin based geopolymer systems. Ceram Int 42:7406–7413. https://doi.org/10.1016/j.ceramint.2016.01.144

    Article  Google Scholar 

  42. van Deventer JSJ, Provis JL, Duxson P, Lukey GC (2007) Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J Hazard Mater 139:506–513. https://doi.org/10.1016/j.jhazmat.2006.02.044

    Article  Google Scholar 

  43. Gomes KC, Lima GST, Torres SM et al (2010) Iron distribution in geopolymer with ferromagnetic rich precursor. Mater Sci Forum 643:131–138. https://doi.org/10.4028/www.scientific.net/MSF.643.131

    Article  Google Scholar 

  44. Hu Y, Liang S, Yang J et al (2019) Role of Fe species in geopolymer synthesized from alkali-thermal pretreated Fe-rich Bayer red mud. Constr Build Mater 200:398–407. https://doi.org/10.1016/j.conbuildmat.2018.12.122

    Article  Google Scholar 

  45. Singh S, Aswath MU, Das Biswas R et al (2019) Role of iron in the enhanced reactivity of pulverized Red mud: Analysis by Mössbauer spectroscopy and FTIR spectroscopy. Case Stud Constr Mater. https://doi.org/10.1016/j.cscm.2019.e00266

    Article  Google Scholar 

  46. Narimani Zamanabadi S, Zareei SA, Shoaei P, Ameri F (2019) Ambient-cured alkali-activated slag paste incorporating micro-silica as repair material: Effects of alkali activator solution on physical and mechanical properties. Constr Build Mater 229:116911. https://doi.org/10.1016/j.conbuildmat.2019.116911

    Article  Google Scholar 

  47. Palomo A, Grutzeck MW, Blanco MT (1999) Alkali-activated fly ashes: a cement for the future. Cem Concr Res 29:1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9

    Article  Google Scholar 

  48. Das SK, Mishra J, Singh SK et al (2020) Characterization and utilization of rice husk ash (RHA) in fly ash—Blast furnace slag based geopolymer concrete for sustainable future. Mater Today Proc 33:5162–5167

    Article  Google Scholar 

  49. Mustakim SM, Das SK, Mishra J et al (2021) Improvement in fresh, mechanical and microstructural properties of fly ash—blast furnace slag based geopolymer concrete by addition of nano and micro silica. SILICON 13:2415–2428. https://doi.org/10.1007/s12633-020-00593-0

    Article  Google Scholar 

  50. Das SK, Mustakim SM, Adesina A et al (2020) Fresh, strength and microstructure properties of geopolymer concrete incorporating lime and silica fume as replacement of fly ash. J Build Eng 32:101780. https://doi.org/10.1016/j.jobe.2020.101780

    Article  Google Scholar 

  51. Indian standard code of practice for Specification for moulds for use in tests of cement, Concrete (1982) IS: 10086–1982. Bureau of Indian Standards, New Delhi, India

  52. Indian standard code of practice for Methods of sampling and analysis of concrete (1959) IS : 1199–1959. Bureau of Indian Standards, New Delhi, India

  53. Indian standard code of practice for Method of Tests for Strength of Concrete (1959) IS : 516–1959. Bureau of Indian Standards, New Delhi, India

  54. Junaid MT, Karzad AS, Altoubat S (2020) Stress-strain behaviour and strength properties of ambient cured geo-polymer concrete. IOP Conf Series Mater Sci Eng 839:012005

    Article  Google Scholar 

  55. Saloni Singh A, Sandhu V et al (2020) Effects of alccofine and curing conditions on properties of low calcium fly ash-based geopolymer concrete. Mater Today Proc 32:620–625

    Article  Google Scholar 

  56. Parthiban K, Saravanarajamohan K, Shobana S, Anchal Bhaskar A (2013) Effect of replacement of Slag on the mechanical properties of flyash based Geopolymer Concrete. Int J Eng Technol 5:2555–2559

    Google Scholar 

  57. Kuri JC, Khan MNN, Sarker PK (2021) Fresh and hardened properties of geopolymer binder using ground high magnesium ferronickel slag with fly ash. Constr Build Mater 272:121877. https://doi.org/10.1016/j.conbuildmat.2020.121877

    Article  Google Scholar 

  58. Yang T, Yao X, Zhang Z (2014) Geopolymer prepared with high-magnesium nickel slag: Characterization of properties and microstructure. Constr Build Mater 59:188–194. https://doi.org/10.1016/j.conbuildmat.2014.01.038

    Article  Google Scholar 

  59. Sreenivasan H, Adesanya E, Niu H et al (2021) Evidence of formation of an amorphous magnesium silicate (AMS) phase during alkali activation of (Na-Mg) aluminosilicate glasses. Cem Concr Res 145:106464. https://doi.org/10.1016/j.cemconres.2021.106464

    Article  Google Scholar 

  60. Liska M, Wilson A, Bensted J (2019) Special cements. In: Hewlett PC, Liska M (eds) Lea’s chemistry of cement and concrete, 5th ed. Butterworth-Heinemann, Oxford, UK

  61. Tran H, Dhakal R, Scott A (2020) Mechanical and durability properties of magnesium silicate hydrate binder concrete. Mag Concr Res 72:693–702. https://doi.org/10.1680/jmacr.18.00217

    Article  Google Scholar 

  62. Kupwade-Patil K, Soto F, Kunjumon A et al (2013) Multi-scale modeling and experimental investigations of geopolymeric gels at elevated temperatures. Comput Struct 122:164–177. https://doi.org/10.1016/j.compstruc.2013.01.005

    Article  Google Scholar 

  63. Sha D, Pan B, Sun Y (2020) Investigation on mechanical properties and microstructure of coal-based synthetic natural gas slag (CSNGS) geopolymer. Constr Build Mater 259:119793. https://doi.org/10.1016/j.conbuildmat.2020.119793

    Article  Google Scholar 

  64. Tippayasam C, Balyore P, Thavorniti P et al (2016) Potassium alkali concentration and heat treatment affected metakaolin-based geopolymer. Constr Build Mater 104:293–297. https://doi.org/10.1016/j.conbuildmat.2015.11.027

    Article  Google Scholar 

  65. Ban CC, Ken PW, Ramli M (2017) Effect of sodium silicate and curing regime on properties of load bearing geopolymer mortar block. J Mater Civ Eng 29:04016237. https://doi.org/10.1061/(asce)mt.1943-5533.0001782

    Article  Google Scholar 

  66. Assi LN, Deaver E, Elbatanouny MK, Ziehl P (2016) Investigation of early compressive strength of fly ash-based geopolymer concrete. Constr Build Mater 112:807–815. https://doi.org/10.1016/j.conbuildmat.2016.03.008

    Article  Google Scholar 

  67. Bernal SA, Provis JL, Walkley B et al (2013) Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res 53:127–144. https://doi.org/10.1016/j.cemconres.2013.06.007

    Article  Google Scholar 

  68. Luukkonen T, Runtti H, Niskanen M et al (2016) Simultaneous removal of Ni(II), As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers. J Env Manage 166:579–588. https://doi.org/10.1016/j.jenvman.2015.11.007

    Article  Google Scholar 

  69. Davidovits J, Davidovits R (2020) Ferro-sialate geopolymers (-Fe-O-Si-O-Al-O-). Geopolymer Inst Libr Tech Pap. https://doi.org/10.1314/RG.2.2.25792.89608/2

    Article  Google Scholar 

  70. Kamseu E, Kaze CR, Fekoua JNN et al (2020) Ferrisilicates formation during the geopolymerization of natural Fe-rich aluminosilicate precursors. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2019.122062

    Article  Google Scholar 

  71. Li Z, Nagashima M, Ikeda K (2018) Treatment technology of hazardous water contaminated with radioisotopes with paper sludge ash-based geopolymer-stabilization of immobilization of strontium and cesium by mixing seawater. Mater (Basel) 11:1–21. https://doi.org/10.3390/ma11091521

    Article  Google Scholar 

  72. Li Z, Kondo R, Ikeda K (2021) Development of foamed geopolymer with addition of municipal solid waste incineration fly ash. J Adv Concr Technol 19:830–846. https://doi.org/10.3151/jact.19.830

    Article  Google Scholar 

  73. Lee WKW, Van Deventer JSJ (2004) The interface between natural siliceous aggregates and geopolymers. Cem Concr Res 34:195–206. https://doi.org/10.1016/S0008-8846(03)00250-3

    Article  Google Scholar 

  74. Fu C, Ye H, Zhu K et al (2020) Alkali cation effects on chloride binding of alkali-activated fly ash and metakaolin geopolymers. Cem Concr Compos 114:1–10. https://doi.org/10.1016/j.cemconcomp.2020.103721

    Article  Google Scholar 

  75. Zhang J, Shi C, Zhang Z (2019) Chloride binding of alkali-activated slag/fly ash cements. Constr Build Mater 226:21–31. https://doi.org/10.1016/j.conbuildmat.2019.07.281

    Article  Google Scholar 

  76. Hewlett PC, Liska M (2019) Lea’s chemistry of cement and concrete, 5th ed. Butterworth-Heinemann, Oxford, UK

  77. Ibrahim BS, Kishar E, Heikal M, Awad S (2021) Effect of sulphate, chloride and elevated temperature on the properties of Egyptian slag binder. J Sci Res Sci 38:139–163

    Google Scholar 

  78. Vu AT, Jiang S, Ho K et al (2015) Mesoporous magnesium oxide and its composites: Preparation, characterization, and removal of 2-chloroethyl ethyl sulfide. Chem Eng J 269:82–93. https://doi.org/10.1016/j.cej.2015.01.089

    Article  Google Scholar 

  79. Zaharaki D, Komnitsas K, Perdikatsis V (2010) Use of analytical techniques for identification of inorganic polymer gel composition. J Mater Sci 45:2715–2724. https://doi.org/10.1007/s10853-010-4257-2

    Article  Google Scholar 

  80. Li Y, Wang W, Zhou L et al (2017) Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles. Chemosphere 169:131–138. https://doi.org/10.1016/j.chemosphere.2016.11.060

    Article  Google Scholar 

  81. Li Y, Liang J, Yang Z et al (2019) Reduction and immobilization of hexavalent chromium in chromite ore processing residue using amorphous FeS2. Sci Total Env 658:315–323. https://doi.org/10.1016/j.scitotenv.2018.12.042

    Article  Google Scholar 

  82. Jin M, Wang Z, Lian F, Zhao P (2020) Freeze-thaw resistance and seawater corrosion resistance of optimized tannery sludge/metakaolin-based geopolymer. Constr Build Mater 265:120730. https://doi.org/10.1016/j.conbuildmat.2020.120730

    Article  Google Scholar 

  83. Zheng L, Wang W, Qiao W et al (2015) Immobilization of Cu2+, Zn2+, Pb2+, and Cd2+ during geopolymerization. Front Env Sci Eng 9:642–648. https://doi.org/10.1007/s11783-014-0707-4

    Article  Google Scholar 

  84. Mužek MN, Svilović S, Zelić J (2014) Fly ash-based geopolymeric adsorbent for copper ion removal from wastewater. Desalin Water Treat 52:2519–2526. https://doi.org/10.1080/19443994.2013.792015

    Article  Google Scholar 

  85. Perera D, Aly Z, EV-J of the A (2005) Undefined (2005) immobilization of Pb in a geopolymer matrix. Wiley Online Libr 88:2586–2588. https://doi.org/10.1111/j.1551-2916.2005.00438.x

    Article  Google Scholar 

  86. Huang X, Huang T, Li S et al (2016) Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer. Ceram Int 42:9538–9549. https://doi.org/10.1016/j.ceramint.2016.03.033

    Article  Google Scholar 

  87. USEPA (1990) Toxicity Characteristic Leaching Procedure (TCLP). Method 1311, federal register, vol 55, 1990 ed. US Government, Washington, DC, pp. 11827–11875

  88. The Environment (Protection) Rules (1986) Schedule 6: General standards for discharge of environmental pollutants. Ministry of Environment and Forests, Government of India

  89. Liao CZ, Tang Y, Lee PH et al (2017) Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic. J Hazard Mater 321:449–455. https://doi.org/10.1016/j.jhazmat.2016.09.035

    Article  Google Scholar 

  90. Shih K, White T, Leckie JO (2006) Nickel stabilization efficiency of aluminate and ferrite spinels and their leaching behavior. Env Sci Technol 40:5520–5526. https://doi.org/10.1021/es0601033

    Article  Google Scholar 

  91. Shih K, White T, Leckie JO (2006) Spinel formation for stabilizing simulated nickel-laden sludge with aluminum-rich ceramic precursors. Env Sci Technol 40:5077–5083. https://doi.org/10.1021/es052324z

    Article  Google Scholar 

  92. Peng Z, Gu F, Zhang Y et al (2018) Chromium: a double-edged sword in preparation of refractory materials from ferronickel slag. ACS Sustain Chem Eng 6:10536–10544. https://doi.org/10.1021/acssuschemeng.8b01882

    Article  Google Scholar 

  93. Gu F, Peng Z, Zhang Y et al (2020) Promoting spinel formation and growth for preparation of refractory materials from ferronickel slag. Int J Appl Ceram Technol 17:1701–1712. https://doi.org/10.1111/ijac.13481

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr Rajiv Mohapatra for supplying ferrochrome ash which is used in this experiment. The authors gratefully acknowledge the support of all the laboratory staff at CSIR-IMMT, Bhubaneswar during the conduct of the study. The needful technical cooperation from Mr R.S. Krishna (CSIR-IMMT, Bhubaneswar) during this research is very much appreciated.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JM; Methodology: BN; Formal analysis and investigation: JM, SKD; Writing–original draft preparation: JM, SKD; Writing–review and editing: BN; Resources: SMM; Supervision: BN, SKP, SMM.

Corresponding author

Correspondence to Bharadwaj Nanda.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, J., Nanda, B., Patro, S.K. et al. Influence of ferrochrome ash on mechanical and microstructure properties of ambient cured fly ash-based geopolymer concrete. J Mater Cycles Waste Manag 24, 1095–1108 (2022). https://doi.org/10.1007/s10163-022-01381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01381-1

Keywords

Navigation