Skip to main content
Log in

Mathematics of the Genome

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This work gives a mathematical foundation for bifurcation from a stable equilibrium in the genome. We construct idealized dynamics associated with the genome. For this dynamics, we investigate the two main bifurcations from a stable equilibrium. Finally, we give mathematical proofs of existence and points of bifurcation for the repressilator and the toggle gene circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Monod, F. Jacob. General conclusions: Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26 (1961), 389-401.

    Article  Google Scholar 

  2. S. Kauffman, W. S. McCulloch. Random Nets of Formal Genes. Quarterly Progress Report 34. Research Laboratory of Electronics, Massachusetts Institute of Technology, 1967.

  3. S. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22 (1969), 437-467.

    Article  MathSciNet  Google Scholar 

  4. L. Glass. Classification of biological networks by their qualitative dynamics. Journal of Theoretical Biology, 54 (1975), 85-107.

    Article  Google Scholar 

  5. L. Glass, J. S. Pasternack. Stable oscillations in mathematical models of biological control systems. Journal of Mathematical Biology, 6 (1978), 207-223.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. P. Hastings, J. Tyson, D. Webster. Existence of Periodic Solutions for Negative Feedback Cellular Control Systems. Journal of Differential Equations, 25 (1977), 39-64.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Mallet-Paret, H. L. Smith. The Poincare-Bendixson theorem for monotone cyclic feedback systems. Journal of Dynamics and Differential Equations, 2 (1990), 367-421.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Gedeon, K. Mischaikow. Structure of the global attractor of cyclic feedback systems. Journal of Dynamics and Differential Equations, 7 (1995), 141-190.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Bürgisser, F. Cucker. Condition: The Geometry ofNumerical Algorithms. Springer Verlag 2013.

  10. U. Alon. An Introduction to Systems Biology: Design Principles of Biological Circuits. Boca Raton, FL: Chapman & Hall/CRC Press, 2006.

    MATH  Google Scholar 

  11. F. R. Chung. Spectral graph theory, Vol 92, American MathematicalSoc., 1997.

  12. R. Edwards, L. Glass. Dynamics in Genetic Networks. The American Mathematical Monthly. 121 (2014),793-809.

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Rajapakse, M. Groudine. On Emerging Nuclear order. Journal of Cell Biology, 192 (2011), 711-721.

    Article  Google Scholar 

  14. M. W. Hirsch, S. Smale. Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, 1974.

  15. S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos. Springer-Verlag, New York, second edition, 2003

    MATH  Google Scholar 

  16. J. Guckenheimer, P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 2002.

    MATH  Google Scholar 

  17. Y. A. Kuznetsov. Elements of applied bifurcation theory. Springer-Verlag, New York, second edition, 1998.

    MATH  Google Scholar 

  18. A. I. Mees, L. O. Chua. The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems. IEEE Trans. Circ. Syst., 26 (1979), 235–5.

  19. J. E. Marsden, M. McCracken. The Hopf Bifurcation and Its Applications. Applied Mathematical Sciences. Vol.19. Springer-Verlag , New York, NY, 1976.

    Book  MATH  Google Scholar 

  20. E. Hopf. Abzweigung einer periodischen Losung von einer stationaren Losung eines Di erentialsystems. Ber Math Phys Kl Sachs Akad Wiss Leipzig, 94 (1942), 1-22.

    Google Scholar 

  21. J. C. Alexander, J. A. Yorke. Global bifurcations of periodic orbits. American Journal of Mathematics, 100 (1978), 263-292.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Mallet-Paret, J. A. Yorke. Snakes: Oriented families of periodic orbits, their sources, sinks, and continuation. Journal of Differential Equations, 43 (1982), 419- 450.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. S. Gardner, C. R. Cantor, J. J. Collins. Construction of a genetic toggle switch in Escherichia coli. Nature, 403 (2000), 339-342.

    Article  Google Scholar 

  24. S. P. Ellner, J. Guckenheimer. Dynamics models in biology. Princeton University Press, Princeton, New Jersey, 2006.

    MATH  Google Scholar 

  25. M. B. Elowitz, S. Leibler. A synthetic oscillatory network of transcriptional regulators. Nature, 403 (2000), 335-338.

    Article  Google Scholar 

  26. O. Buse, A. Kuznetsov, R. Pérez. Existence of limit cycles in the repressilator equation. Int. J. Bifurcation Chaos, 19 (2009), 4097-4106.

    Article  MathSciNet  MATH  Google Scholar 

  27. V. Guillemin, A. Pollack. Differential Topology. Prentice-Hall, 1974.

Download references

Acknowledgments

We would like to thank Yan Jun, Lu Zhang, Lindsey Muir, Geoff Patterson, Xin Guo, Anthony Bloch, an anonymous referee and especially Mike Shub for helpful discussions. We extend thanks to James Gimlett and Srikanta Kumar at Defense Advanced Research Projects Agency for support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Smale.

Additional information

Communicated by Michael Shub.

Appendices

Appendix 1

The existence of a pitchfork bifurcation in the two-gene case

When \(\alpha _{1}=\alpha _{2}=2,\) and \(m=n>0,\) the system in Eq.  (11) can be written as

$$\begin{aligned} \frac{{\hbox {d}}x}{{\hbox {d}}t}&=\frac{2}{1+y^{m}}-x\nonumber \\ \frac{{\hbox {d}}y}{{\hbox {d}}t}&=\frac{2}{1+x^{m}}-y, x,y\ge 0. \end{aligned}$$
(23)

Proposition 2

For our system given by A1, for \(0\le m\le 2,\) every equilibria must be \(\left( 1,1\right) .\) This can be proved by numerics.

The Jacobian matrix J at (1, 1)

$$\begin{aligned} J=\left( \begin{array} [c]{cc} -1 &{} -m\frac{\alpha y^{m-1}}{\left( y^{m}+1\right) ^{2}}\\ -m\frac{\alpha x^{m-1}}{\left( x^{m}+1\right) ^{2}} &{} -1 \end{array} \right) =\left( \begin{array} [c]{cc} -1 &{} -\frac{1}{2}m\\ -\frac{1}{2}m &{} -1 \end{array} \right) \end{aligned}$$

and the \(det(J)=1-\frac{1}{4}m^{2}.\) Therefore, \(0\le m<2,\) \(\ det(J)>0,\) and \(m=2\), \(\ det(J)=0;\) this is a condition for a pitchfork bifurcation.

Appendix 2

The existence of a Hopf bifurcation in the three-gene case

A simple case of the repressilator can be written as

$$\begin{aligned} \frac{{\hbox {d}}x}{{\hbox {d}}t}&=\frac{\alpha }{1+z^{m}}-x\nonumber \\ \frac{{\hbox {d}}y}{{\hbox {d}}t}&=\frac{\alpha }{1+x^{m}}-y\nonumber \\ \frac{{\hbox {d}}z}{{\hbox {d}}t}&=\frac{\alpha }{1+y^{m}}-z,\text { }x,y,z\ge 0. \end{aligned}$$
(24)

The diagonal \(x=y=z=s,\) is parameterized by s. Then, the coordinates of an equilibrium state are (sss),  and the equilibrium path is described by

$$\begin{aligned} s+s^{m+1}-\alpha =0. \end{aligned}$$
(25)

The Jacobian matrix J at (sss) is

$$\begin{aligned} J=\left( \begin{array} [c]{ccc} -1 &{} 0 &{} -\frac{ms^{m}}{\left( s^{m}+1\right) }\\ -\frac{ms^{m}}{\left( s^{m}+1\right) } &{} -1 &{} 0\\ 0 &{} -\frac{ms^{m}}{\left( s^{m}+1\right) } &{} -1 \end{array} \right) . \end{aligned}$$

The real part of the complex eigenvalues is, Re\((\lambda )=\) \(-\frac{1}{2}\left( \frac{-ms^{m}}{\left( s^{m}+1\right) }\right) -1.\) The condition for a Hopf bifurcation is thus

$$\begin{aligned} -\frac{1}{2}\left( \frac{-ms^{m}}{\left( s^{m}+1\right) }\right) -1=0. \end{aligned}$$

This further simplifies to \(s^{m}(2-m)=-2\) and for any \(m>2,\) the following equation determines a bifurcation value for s.

$$\begin{aligned} s=\root m \of {\frac{2}{m-2}} \end{aligned}$$

Therefore, this satisfies the conditions for a generic Hopf bifurcation. See [25] for a related treatment.

Appendix 3

The existence of a pitchfork bifurcation in the three-gene case

As an example in Case 2 (Sect. 5), for the system described in Eq. (12), we take

$$\begin{aligned} \frac{{\hbox {d}}x}{{\hbox {d}}t}&=\frac{2}{1+z^{m}}-x\nonumber \\ \frac{{\hbox {d}}y}{{\hbox {d}}t}&=\frac{2x^{m}}{1+x^{m}}-y\nonumber \\ \frac{{\hbox {d}}z}{{\hbox {d}}t}&=\frac{2}{1+y^{m}}-z. \end{aligned}$$
(26)

The equilibria of the system C1 are

$$\begin{aligned} x=\frac{2}{1+z^{m}},\text { }y=\frac{2x^{m}}{1+x^{m}},\text { and }z=\frac{2}{1+y^{m}} \end{aligned}$$
(27)

Proposition 3

For our system given by C1, \(0\le m\le 2,\) all equilibria \(\left( x,y,z\right) \) must be \(\left( 1,1,1\right) .\) This can be proved by numerics ( Stephen Lindsly).

The Jacobian matrix is

$$\begin{aligned} J=\left( \begin{array} [c]{ccc} -1 &{} 0 &{} -2m\frac{z^{m-1}}{\left( z^{m}+1\right) ^{2}}\\ 2m\frac{x^{m-1}}{\left( x^{m}+1\right) ^{2}} &{} -1 &{} 0\\ 0 &{} -2m\frac{y^{m-1}}{\left( y^{m}+1\right) ^{2}} &{} -1 \end{array} \right) =\left( \begin{array} [c]{ccc} -1 &{} 0 &{} -\frac{1}{2}m\\ \frac{1}{2}m &{} -1 &{} 0\\ 0 &{} -\frac{1}{2}m &{} -1 \end{array} \right) . \end{aligned}$$

The \(det(J)=\) \(\frac{1}{8}m^{3}-1,\) which is zero exactly when \(m=2\). This satisfies the conditions for the existence of a Pitchfork bifurcation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajapakse, I., Smale, S. Mathematics of the Genome. Found Comput Math 17, 1195–1217 (2017). https://doi.org/10.1007/s10208-016-9316-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-016-9316-x

Keywords

Mathematics Subject Classification

Navigation