Skip to main content
Log in

Lateralization at the individual and population levels of European green lizard in Slovak Karst

  • Original Paper
  • Published:
acta ethologica Aims and scope Submit manuscript

Abstract

Lateralization is one of the specific characteristics of animals, occurring in both invertebrates and vertebrates. Lateralization exists at two levels, individual level and population level. This research is focused on the individual- and population-level lateralization of the European green lizard (Lacerta viridis) under laboratory conditions. Lateralization was observed experimentally in a modified T-maze without the possibility of visual control by lizards. Lizards were stimulated by a piston from the caudal side to simulate a predator attack from behind. The numbers of left and right choices were evaluated. Statistical analysis confirmed no statistically significant difference in lateralization at both the individual and population levels. The absence or presence of autotomy suggests that non-biased lizards have a better chance of escape from a predator than left- or right-biased individuals. In the population of L. viridis studied by us, it seems that to be non-biased could be the best strategy to survive predator attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrew RJ (2002) The earliest origins and subsequent evolution of lateralization. Comp Vertebr lateralization 70–93

  • Bateman PW, Fleming PA (2009) To cut a long tail short: a review of lizard caudal autotomy studies carried out over the last 20 years. J Zool 277:1–14

    Article  Google Scholar 

  • Bisazza A, Facchin L, Vallortigara G (2000) Heritability of lateralization in fish: concordance of right–left asymmetry between parents and offspring. Neuropsychologia 38:907–912

    Article  CAS  Google Scholar 

  • Bisazza A, Rogers LJ, Vallortigara G et al (1998) The origins of cerebral asymmetry : a review of evidence of behavioural and brain lateralization in fishes. Reptiles and Amphibians 22:411–426

    CAS  Google Scholar 

  • Bonati B, Csermely D (2013) Lateralization in lizards: evidence of presence in several contexts. In: Behavioral Lateralization in Vertebrates. Springer, pp 25–38

  • Bonati B, Csermely D, López P, Martín J (2010) Lateralization in the Escape Behaviour of the Common Wall Lizard (podarcis Muralis ) 207:1–6. https://doi.org/10.1016/j.bbr.2009.09.002

    Article  Google Scholar 

  • Bonati B, Csermely D, Romani R (2008) Lateralization in the Predatory Behaviour of the Common Wall Lizard (podarcis Muralis ) 79:171–174. https://doi.org/10.1016/j.beproc.2008.07.007

    Article  CAS  Google Scholar 

  • Brattstrom BH (1974) The evolution of reptilian social behavior. Integr Comp Biol 14:35–49. https://doi.org/10.1093/icb/14.1.35

    Article  Google Scholar 

  • Brock KM, Bednekoff PA, Pafilis P, Foufopoulos J (2015) Evolution of antipredator behavior in an island lizard species, Podarcis erhardii (Reptilia: Lacertidae): the sum of all fears? Evolution (NY) 69:216–231

    Article  Google Scholar 

  • Brown RM, Taylor DH, Gist DH (1995) Effect of caudal autotomy on locomotor performance of wall lizards (Podarcis muralis). J Herpetol 98–105

  • Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349

    Article  CAS  Google Scholar 

  • Chapple DG, Swain R (2004) Inter-populational variation in the cost of autotomy in the metallic skink (Niveoscincus metallicus). J Zool 264:411–418

    Article  Google Scholar 

  • Crow T (2004) Directional asymmetry is the key to the origin of modern Homo sapiens (the Broca-Annett axiom): a reply to Rogers’ review of The Speciation of Modern Homo Sapiens. Laterality Asymmetries Body, Brain Cogn 9:233–242

    Article  Google Scholar 

  • Dadda M, Koolhaas WH, Domenici P (2010) Behavioural asymmetry affects escape performance in a teleost fish. Biology Letters 6(3):414–417. https://doi.org/10.1098/rsbl.2009.0904

    Article  PubMed  PubMed Central  Google Scholar 

  • Dadda M, Nepomnyashchikh VA, Izvekov EI, Bisazza A (2012) Individual-level consistency of different laterality measures in the goldbelly topminnow. Behav Neurosci 126:845

    Article  Google Scholar 

  • Daniels CB (1983) Running: an escape strategy enhanced by autotomy. Herpetologica 162–165

  • Deckel AW (1995) Laterality of Aggressive Responses in Anolis 200:194–200

    Google Scholar 

  • Ekner-Grzyb A, Sajkowska Z, Dudek K et al (2013) Locomotor performance of sand lizards (Lacerta agilis): effects of predatory pressure and parasite load. Acta Ethol 16:173–179

    Article  Google Scholar 

  • Foster WA, Treherne JE (1981) Evidence for the dilution effect in the selfish herd from fish predation on a marine insect. Nature 293:466–467

    Article  Google Scholar 

  • Fox SF, Rose E, Myers R (1981) Dominance and the acquisition of superior home ranges in the lizard Uta stansburiana. Ecology 62:888–893

    Article  Google Scholar 

  • Franklin WE, Lima SL (2001) Laterality in avian vigilance: do sparrows have a favourite eye? Anim Behav 62:879–885. https://doi.org/10.1006/anbe.2001.1826

  • Frasnelli E (2013) Brain and behavioral lateralization in invertebrates. Front Psychol 4:939

    Article  Google Scholar 

  • Frasnelli E, Vallortigara G (2018). SS Symmetry Two Sides of the Same Coin. https://doi.org/10.3390/sym10120739

    Article  Google Scholar 

  • Garcia-Munoz E, Rato C, Jorge F, Carretero MA (2013) Lateralization in escape behaviour at different hierarchical levels in a Gecko: Tarentola angustimentalis from Eastern Canary Islands. PLoS One 8:

  • Ghirlanda S, Vallortigara G (2004) The evolution of brain lateralization : a game-theoretical analysis of population structure. 853–857. https://doi.org/10.1098/rspb.2003.2669

  • Güntürkün O, Kesch S (1987) Visual lateralization during feeding in pigeons. Behav Neurosci 101:433–435

    Article  Google Scholar 

  • Hews DK, Castellano M, Hara E (2004) Aggression in females is also lateralized: left-eye bias during aggressive courtship rejection in lizards. Anim Behav 68:1201–1207

    Article  Google Scholar 

  • Ibáñez A, López P, Martín J (2014) Inter-individual variation in antipredator hiding behavior of Spanish terrapins depends on sex, size, and coloration. Ethology 120:742–752

    Article  Google Scholar 

  • Jacobson F, Garrison G, Penner J et al (2016) Escape behaviour in the leopard lizard (Gambelia wislizenii): effects of starting distance and sex. Amphibia-Reptilia 37:320–324

    Article  Google Scholar 

  • Levy J (1977) The mammalian brain and the adaptive advantage of cerebral asymmetry. Ann N Y Acad Sci 299:264–272

    Article  CAS  Google Scholar 

  • Lippolis G, Joss JMP, Rogers LJ (2009) Australian lungfish (Neoceratodus forsteri): a missing link in the evolution of complementary side biases for predator avoidance and prey capture. Brain Behav Evol 73:295–303

    Article  CAS  Google Scholar 

  • MacNeilage PF, Rogers LJ, Vallortigara G (2009) Origins of the left and right brain. Sci Am 301:60–67

    Article  Google Scholar 

  • Majláth I, Majláthová V (2009) Escape behavior of the green lizard (Lacerta viridis) in the Slovak Karst. Acta Ethol 12:99

    Article  Google Scholar 

  • Martín J, López P, Bonati B, Csermely D (2010) Lateralization when monitoring predators in the wild: a left eye control in the common wall lizard (Podarcis muralis). Ethology 116:1226–1233

    Article  Google Scholar 

  • Matuschka F-R, Bannert B (1987) Cannibalism and autotomy as predator-prey relationship for monoxenous Sarcosporidia. Parasitol Res 74:88–93

    Article  CAS  Google Scholar 

  • McGrew WC, Marchant LF (1999) Laterality of hand use pays off in foraging success for wild chimpanzees. Primates 40:509–513

    Article  Google Scholar 

  • Medel RG, Jiménez JE, Fox SF, Jaksić FM (1988) Experimental evidence that high population frequencies of lizard tail autotomy indicate inefficient predation. Oikos 321–324

  • Pellitteri-rosa D, Gazzola A (2018) Context-dependent behavioural lateralization in the European pond turtle Emys orbicularis (Testudines, Emydidae). https://doi.org/10.1242/jeb.186775

  • Pianka ER (1970) Comparative autecology of the lizard Cnemidophorus tigris in different parts of its georgraphic range. Ecology 51:703–720

    Article  Google Scholar 

  • Reddon AR, Hurd PL (2009) Individual differences in cerebral lateralization are associated with shy–bold variation in the convict cichlid. Anim Behav 77:189–193

    Article  Google Scholar 

  • Robinson MH, Abele LG, Robinson B (1970) Attack autotomy: a defense against predators. Science (80- ) 169:300–301

  • Rodriguez M, Afonso D (1993) Ontogeny of T-maze behavioral lateralization in rats. Physiol Behav 54:91–94

    Article  CAS  Google Scholar 

  • Rogers L, Vallortigara G (2015) When and why did brains break symmetry? Symmetry (basel) 7:2181–2194

    Article  Google Scholar 

  • Rogers LJ (2010) Relevance of brain and behavioural lateralization to animal welfare. Appl Anim Behav Sci 127:1–11. https://doi.org/10.1016/j.applanim.2010.06.008

    Article  Google Scholar 

  • Rogers LJ, Vallortigara G, Andrew RJ (2013) Divided brains: the biology and behaviour of brain asymmetries. Cambridge University Press

    Book  Google Scholar 

  • Rogers LJ, Workman L (1989) Light exposure during incubation affects competitive behaviour in domestic chicks. Appl Anim Behav Sci 23:187–198

    Article  Google Scholar 

  • Rogers LJ, Zucca P, Vallortigara G et al (2004). Advantages of Having a Lateralized Brain Advantages of Having a Lateralized Brain. https://doi.org/10.1098/rsbl.2004.0200

    Article  Google Scholar 

  • Romano M, Parolini M, Caprioli M et al (2015) Individual and population-level sex-dependent lateralization in yellow-legged gull ( Larus michahellis ) chicks. Behav Processes 115:109–116. https://doi.org/10.1016/j.beproc.2015.03.012

    Article  PubMed  Google Scholar 

  • Samia DSM, Blumstein DT, Stankowich T, Cooper WE (2016) Fifty years of chasing lizards: new insights advance optimal escape theory. Biol Rev 91:349–366. https://doi.org/10.1111/brv.12173

    Article  PubMed  Google Scholar 

  • Schoener TW (1979) Inferring the properties of predation and other injury-producing agents from injury frequencies. Ecology 60:1110–1115

    Article  Google Scholar 

  • Sovrano VA, Dadda M, Bisazza A (2005) Lateralized fish perform better than nonlateralized fish in spatial reorientation tasks. Behav Brain Res 163:122–127

    Article  Google Scholar 

  • Stancher G, Clara E, Regolin L, Vallortigara G (2006) Lateralized righting behavior in the tortoise (Testudo hermanni). Behav Brain Res 173:315–319

    Article  Google Scholar 

  • Tokarz RR (1995) Mate choice in lizards: a review. Herpetological Monographs 9:17–40. https://doi.org/10.2307/1466994

    Article  Google Scholar 

  • Turner FB, Medica PA, Jennrich RI, Maza BG (1982) Frequencies of broken tails among Uta stansburiana in southern Nevada and a test of the predation hypothesis. Copeia 835–840

  • Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–588

    Article  Google Scholar 

  • Vallortigara G, Rogers LJ, Bisazza A (1999) Possible evolutionary origins of cognitive brain lateralization. Brain Res Rev 30:164–175

    Article  CAS  Google Scholar 

  • Vallortigara G, Versace E (2017) Laterality at the neural, cognitive, and behavioral levels.

  • Van Sluys M, Vrcibradic D, Rocha CFD (2002) Tail loss in the syntopic lizards Tropidurus itambere (Tropiduridae) and Mabuya frenata (Scincidae) in southeastern Brazil. Stud Neotrop Fauna Environ 37:227–231

    Article  Google Scholar 

  • Wake DB, Dresner IG (1967) Functional morphology and evolution of tail autotomy in salamanders. J Morphol 122:265–305

    Article  CAS  Google Scholar 

  • Wilkie IC (1978) Arm autotomy in brittlestars (Echinodermata: Ophiuroidea). J Zool 186:311–330

    Article  Google Scholar 

Download references

Funding

The study was partially funded by the project of Scientific Grant Agency of the Ministry of Education, science, research, and sport of the Slovak Republic and the Slovak Academy of Sciences—VEGA 2/0113/18 and 1/0298/19 and APVV-19–0440.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Majláth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pikalík, M., Pipová, N., Majláthová, V. et al. Lateralization at the individual and population levels of European green lizard in Slovak Karst. acta ethol 25, 15–24 (2022). https://doi.org/10.1007/s10211-021-00382-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10211-021-00382-x

Keywords

Navigation