Skip to main content

Advertisement

Log in

Bayesian inference of spatially varying Manning’s n coefficients in an idealized coastal ocean model using a generalized Karhunen-Loève expansion and polynomial chaos

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Bayesian inference with coordinate transformations and polynomial chaos for a Gaussian process with a parametrized prior covariance model was introduced in Sraj et al. (Comput Methods Appl Mech Eng 298:205–228, 2016a) to enable and infer uncertainties in a parameterized prior field. The feasibility of the method was successfully demonstrated on a simple transient diffusion equation. In this work, we adopt a similar approach to infer a spatially varying Manning’s n field in a coastal ocean model. The idea is to view the prior on the Manning’s n field as a stochastic Gaussian field, expressed through a covariance function with uncertain hyper-parameters. A generalized Karhunen-Loève (KL) expansion, which incorporates the construction of a reference basis of spatial modes and a coordinate transformation, is then applied to the prior field. To improve the computational efficiency of the method proposed in Sraj et al. (Comput Methods Appl Mech Eng 298:205–228, 2016a), we propose to use two polynomial chaos expansions to (i) approximate the coordinate transformation and (ii) build a cheap surrogate of the large-scale advanced circulation (ADCIRC) numerical model. These two surrogates are used to accelerate the Bayesian inference process using a Markov chain Monte Carlo algorithm. Water elevation data are inverted within an observing system simulation experiment framework, based on a realistic ADCIRC model, to infer the KL coordinates and hyper-parameters of a reference 2D Manning’s field. Our results demonstrate the efficiency of the proposed approach and suggest that including the hyper-parameter uncertainties greatly enhances the inferred Manning’s n field, compared with using a covariance with fixed hyper-parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alexanderian A, Winokur J, Sraj I, Srinivasan A, Iskandarani M, Thacker WC, Knio O (2012) Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach. Comput Geosci 16(3):757–778. https://doi.org/10.1007/s10596-012-9286-2

    Google Scholar 

  • Altaf M, Butler T, Luo X, Dawson C, Mayo T, Hoteit I (2013) Improving short-range ensemble Kalman storm surge forecasting using robust adaptive inflation. Mon Weather Rev 141(8):2705–2720

    Google Scholar 

  • Altaf M, Raboudi N, Gharamti M, Dawson C, McCabe M, Hoteit I (2014) Hybrid vs adaptive ensemble Kalman filtering for storm surge forecasting. AGU Fall Meet Abstract 1:3352

    Google Scholar 

  • Anderson J (2001) An ensemble adjustment Kalman filter for data assimilation. Mon Weather Rev 129(12):2884–2903

    Google Scholar 

  • Annan J, Hargreaves J, Edwards N, Marsh R (2005) Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter. Ocean Model 8(1):135–154

    Google Scholar 

  • Besag J, Green P, Higdon D, Mengersen K (1995) Bayesian computation and stochastic systems. Stat Sci 10:3–41

    Google Scholar 

  • Bishop CH, Etherton BJ, Majumdar SJ (2001) Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon Weather Rev 129(3):420–436

    Google Scholar 

  • Budgell WP (1987) Stochastic filtering of linear shallow water wave processes. SIAM J Sci Stat Comput 8(2):152–170. https://doi.org/10.1137/0908027

    Google Scholar 

  • Bunya S, Dietrich J, Westerink J, Ebersole B, Smith J, Atkinson J, Jensen R, Resio D, Luettich R, Dawson C et al (2010) A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part I: model development and validation. Mon Weather Rev 138(2):345–377

    Google Scholar 

  • Butler T, Altaf M, Dawson C, Hoteit I, Luo X, Mayo T (2012a) Data assimilation within the advanced circulation (ADCIRC) modeling framework for hurricane storm surge forecasting. Mon Weather Rev 140(7):2215–2231

    Google Scholar 

  • Butler T, Altaf M, Dawson C, Hoteit I, Luo X, Mayo T (2012b) Data assimilation within the advanced circulation (ADCIRC) modeling framework for hurricane storm surge forecasting. Mon Weather Rev 140:2215–2231

    Google Scholar 

  • Conrad PR, Marzouk Y (2013) Adaptive Smolyak pseudospectral approximations. SIAM J Sci Comp 35(6):A2643–A2670. https://doi.org/10.1137/120890715

    Google Scholar 

  • Constantine PG, Eldred MS, Phipps ET (2012) Sparse pseudospectral approximation method. Comp Meth App Mech Eng 229:1–12

    Google Scholar 

  • Cressie N, Johannesson G (2008) Fixed rank kriging for very large spatial data sets. J R Stat Soc Ser B (Stat Methodol) 70(1):209–226. https://doi.org/10.1111/j.1467-9868.2007.00633.x

    Google Scholar 

  • Dietrich J, Bunya S, Westerink J, Ebersole B, Smith J, Atkinson J, Jensen R, Resio D, Luettich R, Dawson C et al (2010) A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part II: synoptic description and analysis of hurricanes katrina and rita. Mon Weather Rev 138(2):378–404

    Google Scholar 

  • Dietrich J, Westerink J, Kennedy A, Smith J, Jensen R, Zijlema M, Holthuijsen L, Dawson C, Luettich Jr RL, Powell M et al (2011) Hurricane Gustav (2008) waves and storm surge: hindcast, synoptic analysis, and validation in southern Louisiana. Mon Weather Rev 139(8):2488–2522

    Google Scholar 

  • ElSheikh AH, Pain CC, Fang F, Gomes JLMA, Navon IM (2013) Parameter estimation of subsurface flow models using iterative regularized ensemble Kalman filter. Stoch Env Res Risk A 27(4):877–897. https://doi.org/10.1007/s00477-012-0613-x

    Google Scholar 

  • Furrer R, Genton MG, Nychka D (2006) Covariance tapering for interpolation of large spatial datasets. J Comput Graph Stat 15(3):502–523. https://doi.org/10.1198/106186006X132178

    Google Scholar 

  • Gamerman D, Lopes H (2006) Markov chain monte carlo: stochastic simulation for Bayesian inference. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Ghanem R, Red-Horse J (1999) Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach. Fluid Dyn Res 133:137–144

    Google Scholar 

  • Ghanem R, Spanos P (2002) Stochastic finite elements: a spectral approach, 2nd edn. Dover, New York

    Google Scholar 

  • Ghanem R, Spanos P (2003) Stochastic finite elements: a spectral approach. Civil, Mechanical and Other Engineering Series. Dover Publications. https://books.google.com.sa/books?id=WzgKyTQQcAwC https://books.google.com.sa/books?id=WzgKyTQQcAwC

  • Giraldi L, Le Maître OP, Mandli K, Dawson C, Hoteit I, Knio O (2017) Bayesian inference of earthquake parameters from buoy data using a polynomial chaos-based surrogate. Comput Geosci 21 (4):683–699. https://doi.org/10.1007/s10596-017-9646-z

    Google Scholar 

  • Haario H, Saksman E, Tamminen J (2001) An adaptive metropolis algorithm. Bernoulli 7 (2):223–242

    Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109. https://doi.org/10.1093/biomet/57.1.97

    Google Scholar 

  • Ho Y, Lee R (1964) A Bayesian approach to problems in stochastic estimation and control. IEEE Trans Autom Control 9(4):333–339. https://doi.org/10.1109/TAC.1964.1105763

    Google Scholar 

  • Hoteit I, Pham DT, Blum J (2002) A simplified reduced order Kalman filtering and application to altimetric data assimilation in tropical pacific. J Mar Syst 36(1–2):101–127. https://doi.org/10.1016/S0924-7963(02)00129-X

    Google Scholar 

  • Hoteit I, Triantafyllou GK (2007) Using low-rank ensemble Kalman filters for data assimilation with high dimensional imperfect models. JNAIAM 2(1-2):67–78

    Google Scholar 

  • Jelesnianski CP (1966) Numerical computations of storm surges without bottom stress. Mon Weather Rev 94(6):379–394

    Google Scholar 

  • Kaipio J, Somersalo E (2007) Statistical inverse problems: discretization, model reduction and inverse crimes. J Comput Appl Math 198(2):493–504

    Google Scholar 

  • Karhunen K (1947) Ueber lineare Methoden in der Wahrscheinlichkeitsrechnung. Annales Academiae scientiarum Fennicae. Series A. 1, Mathematica-physica. https://books.google.co.in/books?id=Dn3gSAAACAAJ

  • Kennedy AB, Gravois U, Zachry BC, Westerink J, Hope ME, Dietrich JC, Powell MD, Cox AT, Luettich R, Dean RG (2011a) Origin of the Hurricane Ike forerunner surge. Geophysical Research Letters 38(8) L08608 https://doi.org/10.1029/2011GL047090.

  • Kennedy M, O’hagan A (2011b) Bayesian calibration of computer models. J R Stat Soc Ser B (Stat Method) 63(2001):425–464

    Google Scholar 

  • Kinnmark IP, Gray WG (1985) The 2δ x-test: a tool for analyzing spurious oscillations. Adv Water Resour 8(3):129–135. https://doi.org/10.1016/0309-1708(85)90053-3

    Google Scholar 

  • Knio O, Maitre O (2006) Uncertainty propagation in CFD using polynomial chaos decomposition. Physica D 38:616–640

    Google Scholar 

  • Lax P (1996) Linear algebra. Wiley-Interscience, New York

  • Le Maitre O, Knio O, Najm H, Ghanem R (2001) A stochastic projection method for fluid flow. I: basic formulation. J Comput Phys 173:481–511

    Google Scholar 

  • Le Maitre O, Najm H, Pébay P, Ghanem R, Knio O (2007) Multi-resolution-analysis scheme for uncertainty quantification in chemical systems. SIAM J Sci Comput 29(2):864–889

    Google Scholar 

  • Le Maitre O, Knio O (2010) Spectral methods for uncertainty quantification with applications to computational fluid dynamics. Springer, Berlin

    Google Scholar 

  • Loev̀e M (1947) Fonctions aleátoires de second order. Processus Stochastiques et Mouvement Brownien, Hermann

  • Luettich Jr, R, Westerink J, Scheffner NW (1992) ADCIRC: an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Techncial report, Coastal Engineering Research Center VICKSBURG MS

  • Luettich R, Westerink J (2004) Formulation and numerical implementation of the 2D/3D ADCIRC finite element model version 44. XX. R Luettich

  • Lynch DR, Gray WG (1979) A wave equation model for finite element tidal computations. Comput Fluids 7:207–228. https://doi.org/10.1016/0045-7930(79)90037-9

    Google Scholar 

  • Marzouk Y, Najm H, Rahn LA (2007) Stochastic spectral methods for efficient Bayesian solution of inverse problems. J Comput Phys 224(2):560–586. https://doi.org/10.1016/j.jcp.2006.10.010. http://www.sciencedirect.com/science/article/pii/S0021999106004839

  • Marzouk Y, Najm H (2009) Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. J Comput Phys 228(6):1862–1902. https://doi.org/10.1016/j.jcp.2008.11.024. http://www.sciencedirect.com/science/article/pii/S0021999108006062

  • Mayo T, Butler T, Dawson C, Hoteit I (2014) Data assimilation within the advanced circulation (ADCIRC) modeling framework for the estimation of Manning’s friction coefficient. Ocean Model 76:43–58

    Google Scholar 

  • Najm H, Debusschere B, Marzouk Y, Widmer S, Maître OL (2009) Multi-resolution-analysis scheme for uncertainty quantification in chemical systems. Int J Numer Methods Eng 80(6):789–814

    Google Scholar 

  • Phenix B, Dinaro J, Tatang M, Tester J, Howard J, McRae G (1998) Incorporation of parametric uncertainty into complex kinetic mechanisms: application to hydrogen oxidation in supercritical water. Combust Flame 112:132–146

    Google Scholar 

  • Posselt DJ, Bishop CH (2012) Nonlinear parameter estimation: comparison of an ensemble Kalman smoother with a Markov chain Monte Carlo algorithm. Mon Weather Rev 140(6):1957–1974

    Google Scholar 

  • Rasmussen CE, Williams CKI (2005) Gaussian processes for machine learning (adaptive computation and machine learning). The MIT Press, Cambridge

  • Casella RPG (2004) Monte Carlo statistical methods. Appl Math Sci 160(ISBN 0-387-22073-9):344

    Google Scholar 

  • Roberts GO, Rosenthal JS (2009) Examples of adaptive MCMC. J Comput Graph Stat 18 (2):349–367. https://doi.org/10.1198/jcgs.2009.06134

    Google Scholar 

  • Salloum M, Alexanderian A, Maître OPL, Najm H, Knio O (2012) Simplified CSP analysis of a stiff stochastic ODE system. Comput Methods Appl Mech Eng 217-220:121–138. https://doi.org/10.1016/j.cma.2012.01.001. http://www.sciencedirect.com/science/article/pii/S0045782512000035

  • Sang H, Huang JZ (2012) A full scale approximation of covariance functions for large spatial data sets. J R Stat Soc Ser B (Stat Methodol) 74(1):111–132. https://doi.org/10.1111/j.1467-9868.2011.01007.x

    Google Scholar 

  • Serafy GYHE, Mynett AE (2008) Improving the operational forecasting system of the stratified flow in Osaka Bay using an ensemble Kalman filter-based steady state Kalman filter. Water Resour Res 44:W06,416, https://doi.org/10.10292006WR005,412

  • Silverman BW (1982) On the estimation of a probability density function by the maximum penalized likelihood method. Ann Statist 10(3):795–810. https://doi.org/10.1214/aos/1176345872

    Google Scholar 

  • Siripatana A, Mayo T, Sraj I, Knio O, Dawson C, Le Maitre O, Hoteit I (2017) Assessing an ensemble Kalman filter inference of Manning’s n coefficient of an idealized tidal inlet against a polynomial chaos-based MCMC. Ocean Dynamics:1–28. https://doi.org/10.1007/s10236-017-1074-z

  • Siripatana A, Mayo T, Knio O, Dawson C, Maître OL, Hoteit I (2018) Ensemble Kalman filter inference of spatially-varying Manning’s n coefficients in the coastal ocean. J Hydrol 562,:664–684. https://doi.org/10.1016/j.jhydrol.2018.05.021. http://www.sciencedirect.com/science/article/pii/S0022169418303482

  • Sorensen JVT, Madsen H (2006) Parameter sensitivity of three Kalman filter schemes for assimilation of water levels in shelf sea models. Ocean Model 11:441–463

    Google Scholar 

  • Sraj I, Iskandarani M, Srinivasan A, Thacker WC, Winokur J, Alexanderian A, Lee CY, Chen SS, Knio O (2013) Bayesian inference of drag parameters using AXBT data from Typhoon Fanapi. Mon Weather Rev 141(7):2347–2367

    Google Scholar 

  • Sraj I, Mandli K, Knio O, Dawson C, Hoteit I (2014) Uncertainty quantification and inference of Manning’s friction coefficients using dart buoy data during the Tōhoku tsunami. Ocean Model 83:82–97

    Google Scholar 

  • Sraj I, Le maître O, Knio O, Hoteit I (2016a) Coordinate transformation and polynomial chaos for the Bayesian inference of a Gaussian process with parametrized prior covariance function. Comput Methods Appl Mech Eng 298:205–228

    Google Scholar 

  • Sraj I, Zedler S, Knio O, Jackson C, Hoteit I (2016b) Polynomial chaos-based Bayesian inference of k-profile parameterization in a general circulation model of the tropical pacific. Mon Weather Rev 0(0):null. https://doi.org/10.1175/MWR-D-15-0394.1

  • Sørensen JVT, Madsen H (2005) Efficient Kalman filter techniques for the assimilation of tide gauge data in three-dimensional modeling of the North Sea and Baltic Sea system. Journal of Geophysical Research: Oceans (1978-2012) 109(C3) C03017 https://doi.org/10.1029/2003JC002144

  • Stein M (1999) Interpolation of spatial data: some theory for kriging. Springer Series in Statistics. Springer, New York. https://books.google.com.sa/books?id=5n_XuL2Wx1EC

  • Stoyan D, Matérn B (1988) Spatial variation. 2nd ed., Springer, Berlin (1986), 151 s., dm 33,—. Biometr J 30(5):594–594. https://doi.org/10.1002/bimj.4710300514

  • Tagade PM, Choi HL (2014a) A generalized polynomial chaos-based method for efficient Bayesian calibration of uncertain computational models. Inverse Probl Sci Eng 22 (4):602–624. https://doi.org/10.1080/17415977.2013.823411

    Google Scholar 

  • Tagade PM, Choia HL (2014b) A generalized polynomial chaos-based method for efficient Bayesian calibration of uncertain computational models. Inverse Probl Sci Eng 22(4):602–624

    Google Scholar 

  • Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM

  • Verlaan M, Heemink A (1997) Tidal flow forecasting using reduced rank square root filters. Stoch Hydrol Hydraul 11(5):349–368

    Google Scholar 

  • Westerink J, Luettich R, Feyen JC, Atkinson JH, Dawson C, Roberts HJ, Powell MD, Dunion JP, Kubatko EJ, Pourtaheri H (2008) A basin-to channel-scale unstructured grid hurricane storm surge model applied to southern Louisiana. Mon Weather Rev 136(3):833–864

    Google Scholar 

  • Wiener N (1938) The homogeneous chaos. Am J Math 60(4):897–936

    Google Scholar 

  • Xiu D, Karniadakis G (2002) The Weiner-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comp 24:619– 644

    Google Scholar 

  • Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, Princeton

  • Yanagi T (1999) Coastal oceanography, vol 1. Springer, Berlin

Download references

Funding

This work was supported by the Office of Sponsored Research (OSR) at King Abdullah University of Science and Technology (KAUSTl, Saudi Arabia (grant number CRG3-2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Hoteit.

Additional information

Responsible Editor: Martin Verlaan

This article is part of the Topical Collection on the 19th Joint Numerical Sea Modelling Group Conference, Florence, Italy, 17-19 October 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siripatana, A., Le Maitre, O., Knio, O. et al. Bayesian inference of spatially varying Manning’s n coefficients in an idealized coastal ocean model using a generalized Karhunen-Loève expansion and polynomial chaos. Ocean Dynamics 70, 1103–1127 (2020). https://doi.org/10.1007/s10236-020-01382-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-020-01382-4

Keywords

Navigation